Project description:Unlike most daily decisions, medical decision making often has substantial consequences and trade-offs. Recently, big data analytics techniques such as statistical analysis, data mining, machine learning and deep learning can be applied to construct innovative decision models. With complex decision making, it can be difficult to comprehend and compare the benefits and risks of all available options to make a decision. For these reasons, this Special Issue focuses on the use of big data analytics and forms of public health decision making based on the decision model, spanning from theory to practice. A total of 64 submissions were carefully blind peer reviewed by at least two referees and, finally, 23 papers were selected for this Special Issue.
Project description:Ideally, public health policies are formulated from scientific data; however, policy-specific data are often unavailable. Big data can generate ecologically-valid, high-quality scientific evidence, and therefore has the potential to change how public health policies are formulated. Here, we discuss the use of big data for developing evidence-based hearing health policies, using data collected and analyzed with a research prototype of a data repository known as EVOTION (EVidence-based management of hearing impairments: public health pOlicy-making based on fusing big data analytics and simulaTION), to illustrate our points. Data in the repository consist of audiometric clinical data, prospective real-world data collected from hearing aids and an app, and responses to questionnaires collected for research purposes. To date, we have used the platform and a synthetic dataset to model the estimated risk of noise-induced hearing loss and have shown novel evidence of ways in which external factors influence hearing aid usage patterns. We contend that this research prototype data repository illustrates the value of using big data for policy-making by providing high-quality evidence that could be used to formulate and evaluate the impact of hearing health care policies.
Project description:Often times terms such as Big Data, increasing digital footprints in the Internet accompanied with advancing analytical techniques, represent a major opportunity to improve public health surveillance and delivery of interventions. However, early adaption of Big Data in other fields revealed ethical challenges that could undermine privacy and autonomy of individuals and cause stigmatization. This chapter aims to identify the benefits and risks associated with the public health application of Big Data through ethical lenses. In doing so, it highlights the need for ethical discussion and framework towards an effective utilization of technologies. We then discuss key strategies to mitigate potentially harmful aspects of Big Data to facilitate its safe and effective implementation.
Project description:IntroductionBig data technologies have been talked up in the fields of science and medicine. The V-criteria (volume, variety, velocity and veracity, etc) for defining big data have been well-known and even quoted in most research articles; however, big data research into public health is often misrepresented due to certain common misconceptions. Such misrepresentations and misconceptions would mislead study designs, research findings and healthcare decision-making. This study aims to identify the V-eligibility of big data studies and their technologies applied to environmental health and health services research that explicitly claim to be big data studies.Methods and analysisOur protocol follows Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P). Scoping review and/or systematic review will be conducted. The results will be reported using PRISMA for Scoping Reviews (PRISMA-ScR), or PRISMA 2020 and Synthesis Without Meta-analysis guideline. Web of Science, PubMed, Medline and ProQuest Central will be searched for the articles from the database inception to 2021. Two reviewers will independently select eligible studies and extract specified data. The numeric data will be analysed with R statistical software. The text data will be analysed with NVivo wherever applicable.Ethics and disseminationThis study will review the literature of big data research related to both environmental health and health services. Ethics approval is not required as all data are publicly available and involves confidential personal data. We will disseminate our findings in a peer-reviewed journal.Prospero registration numberCRD42021202306.
Project description:Background: Big data and real-world data (RWD) have been increasingly used to measure the effectiveness and costs in cost-effectiveness analysis (CEA). However, the characteristics and methodologies of CEA based on big data and RWD remain unknown. The objectives of this study were to review the characteristics and methodologies of the CEA studies based on big data and RWD and to compare the characteristics and methodologies between the CEA studies with or without decision-analytic models. Methods: The literature search was conducted in Medline (Pubmed), Embase, Web of Science, and Cochrane Library (as of June 2020). Full CEA studies with an incremental analysis that used big data and RWD for both effectiveness and costs written in English were included. There were no restrictions regarding publication date. Results: 70 studies on CEA using RWD (37 with decision-analytic models and 33 without) were included. The majority of the studies were published between 2011 and 2020, and the number of CEA based on RWD has been increasing over the years. Few CEA studies used big data. Pharmacological interventions were the most frequently studied intervention, and they were more frequently evaluated by the studies without decision-analytic models, while those with the model focused on treatment regimen. Compared to CEA studies using decision-analytic models, both effectiveness and costs of those using the model were more likely to be obtained from literature review. All the studies using decision-analytic models included sensitivity analyses, while four studies no using the model neither used sensitivity analysis nor controlled for confounders. Conclusion: The review shows that RWD has been increasingly applied in conducting the cost-effectiveness analysis. However, few CEA studies are based on big data. In future CEA studies using big data and RWD, it is encouraged to control confounders and to discount in long-term research when decision-analytic models are not used.
Project description:The digital revolution has contributed to very large data sets (ie, big data) relevant for public health. The two major data sources are electronic health records from traditional health systems and patient-generated data. As the two data sources have complementary strengths-high veracity in the data from traditional sources and high velocity and variety in patient-generated data-they can be combined to build more-robust public health systems. However, they also have unique challenges. Patient-generated data in particular are often completely unstructured and highly context dependent, posing essentially a machine-learning challenge. Some recent examples from infectious disease surveillance and adverse drug event monitoring demonstrate that the technical challenges can be solved. Despite these advances, the problem of verification remains, and unless traditional and digital epidemiologic approaches are combined, these data sources will be constrained by their intrinsic limits.
Project description:In an era of big data, the availability of satellite-derived global climate, terrain, and land cover imagery presents an opportunity for modeling the suitability of malaria disease vectors at fine spatial resolutions, across temporal scales, and over vast geographic extents. Leveraging cloud-based geospatial analytical tools, we present an environmental suitability model that considers water resources, flow accumulation areas, precipitation, temperature, vegetation, and land cover. In contrast to predictive models generated using spatially and temporally discontinuous mosquito presence information, this model provides continuous fine-spatial resolution information on the biophysical drivers of suitability. For the purposes of this study the model is parameterized for Anopheles gambiae s.s. in Malawi for the rainy (December-March) and dry seasons (April-November) in 2017; however, the model may be repurposed to accommodate different mosquito species, temporal periods, or geographical boundaries. Final products elucidate the drivers and potential habitat of Anopheles gambiae s.s. Rainy season results are presented by quartile of precipitation; Quartile four (Q4) identifies areas most likely to become inundated and shows 7.25% of Malawi exhibits suitable water conditions (water only) for Anopheles gambiae s.s., approximately 16% for water plus another factor, and 8.60% is maximally suitable, meeting suitability thresholds for water presence, terrain characteristics, and climatic conditions. Nearly 21% of Malawi is suitable for breeding based on land characteristics alone and 28.24% is suitable according to climate and land characteristics. Only 6.14% of the total land area is suboptimal. Dry season results show 25.07% of the total land area is suboptimal or unsuitable. Approximately 42% of Malawi is suitable based on land characteristics alone during the dry season, and 13.11% is suitable based on land plus another factor. Less than 2% meets suitability criteria for climate, water, and land criteria. Findings illustrate environmental drivers of suitability for malaria vectors, providing an opportunity for a more comprehensive approach to malaria control that includes not only modeled species distributions, but also the underlying drivers of suitability for a more effective approach to environmental management.
Project description:International development and humanitarian organizations are increasingly calling for digital data to be treated as a public good because of its value in supplementing scarce national statistics and informing interventions, including in emergencies. In response to this claim, a 'responsible data' movement has evolved to discuss guidelines and frameworks that will establish ethical principles for data sharing. However, this movement is not gaining traction with those who hold the highest-value data, particularly mobile network operators who are proving reluctant to make data collected in low- and middle-income countries accessible through intermediaries. This paper evaluates how the argument for 'data as a public good' fits with the corporate reality of big data, exploring existing models for data sharing. I draw on the idea of corporate data as an ecosystem involving often conflicting rights, duties and claims, in comparison to the utilitarian claim that data's humanitarian value makes it imperative to share them. I assess the power dynamics implied by the idea of data as a public good, and how differing incentives lead actors to adopt particular ethical positions with regard to the use of data.This article is part of the themed issue 'The ethical impact of data science'.
Project description:Major public health incidents such as COVID-19 typically have characteristics of being sudden, uncertain, and hazardous. If a government can effectively accumulate big data from various sources and use appropriate analytical methods, it may quickly respond to achieve optimal public health decisions, thereby ameliorating negative impacts from a public health incident and more quickly restoring normality. Although there are many reports and studies examining how to use big data for epidemic prevention, there is still a lack of an effective review and framework of the application of big data in the fight against major public health incidents such as COVID-19, which would be a helpful reference for governments. This paper provides clear information on the characteristics of COVID-19, as well as key big data resources, big data for the visualization of pandemic prevention and control, close contact screening, online public opinion monitoring, virus host analysis, and pandemic forecast evaluation. A framework is provided as a multidimensional reference for the effective use of big data analytics technology to prevent and control epidemics (or pandemics). The challenges and suggestions with respect to applying big data for fighting COVID-19 are also discussed.
Project description:BackgroundThe success of big data initiatives depends on public support. Public involvement and engagement could be a way of establishing public support for big data research.ObjectiveThis review aims to synthesize the evidence on public involvement and engagement in big data research.MethodsThis scoping review mapped the current evidence on public involvement and engagement activities in big data research. We searched 5 electronic databases, followed by additional manual searches of Google Scholar and gray literature. In total, 2 public contributors were involved at all stages of the review.ResultsA total of 53 papers were included in the scoping review. The review showed the ways in which the public could be involved and engaged in big data research. The papers discussed a broad range of involvement activities, who could be involved or engaged, and the importance of the context in which public involvement and engagement occur. The findings show how public involvement, engagement, and consultation could be delivered in big data research. Furthermore, the review provides examples of potential outcomes that were produced by involving and engaging the public in big data research.ConclusionsThis review provides an overview of the current evidence on public involvement and engagement in big data research. While the evidence is mostly derived from discussion papers, it is still valuable in illustrating how public involvement and engagement in big data research can be implemented and what outcomes they may yield. Further research and evaluation of public involvement and engagement in big data research are needed to better understand how to effectively involve and engage the public in big data research.International registered report identifier (irrid)RR2-https://doi.org/10.1136/bmjopen-2021-050167.