Development and In Vitro Validation of Antibacterial Paints Containing Chloroxylenol and Terpineol.
Ontology highlight
ABSTRACT: The establishment of self-disinfecting surfaces is an important method to avoid surface contamination. Recently, paints with antimicrobial properties have been developed to be applied on different surfaces, avoiding contamination with pathogens. In this work, self-disinfecting paints containing Chloroxylenol (CLX), Terpineol (TRP), and a mixture of both substances were developed. The goal was to evaluate and validate these paints using international standards for eventual commercialization and application in scenarios where surface contamination represents a problem. The paints were challenged with five different bacteria, Gram-positive and Gram-negative, before and after a scrub resistance test, where the long-term efficacy of the paints was evaluated. The antibacterial activity assessment was performed following ISO 22196 and JIS Z2801. In general, the paints showed very promising results, demonstrating their antibacterial activity, before and after scrub resistance test. The paint incorporating the mixture of CLX and TRP (CLX+TRP) stood out by revealing consistent results of antibacterial activity both before and after the scrub resistance test for most of the tested bacteria. The cytotoxicity of the developed paints was assessed in vitro by performing tests by direct contact with a human skin cell line, HaCaT, and testes on extracts with HaCaT and a pulmonary cell line, A549. The methodologies for cytotoxicity assessment were developed based in ISO 10993. For genotoxicity assessment, alkaline comet assay was conducted on both cell lines. The cytotoxicity assessment revealed promising results with the paints, demonstrating values of cellular viability above 70% and values of lactate dehydrogenase (LDH) leakage below 30%. The genotoxic assessment also revealed acceptable values of primary DNA damage for the developed antibacterial paints. In general, the selected methodologies presented good potential to be applied in the validation of both efficacy and safety of the antimicrobial paints, aiming to be applied in real scenarios.
SUBMITTER: Querido MM
PROVIDER: S-EPMC9324826 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA