Project description:IntroductionNew strategies for weight loss and weight maintenance in humans are needed. Human brown adipose tissue (BAT) can stimulate energy expenditure and may be a potential therapeutic target for obesity and type 2 diabetes. However, whether exercise training is an efficient stimulus to activate and recruit BAT remains to be explored. This study aimed to evaluate whether regular exercise training affects cold-stimulated BAT metabolism and, if so, whether this was associated with changes in plasma metabolites.MethodsHealthy sedentary men (n = 11; aged 31 [SD 7] years; body mass index 23 [0.9] kg m-2; VO2 max 39 [7.6] mL min-1 kg-1) participated in a 6-week exercise training intervention. Fasting BAT and neck muscle glucose uptake (GU) were measured using quantitative [18F]fluorodeoxyglucose positron emission tomography-magnetic resonance imaging three times: (1) before training at room temperature and (2) before and (3) after the training period during cold stimulation. Cervico-thoracic BAT mass was measured using MRI signal fat fraction maps. Plasma metabolites were analysed using nuclear magnetic resonance spectroscopy.ResultsCold exposure increased supraclavicular BAT GU by threefold (p < 0.001), energy expenditure by 59% (p < 0.001) and plasma fatty acids (p < 0.01). Exercise training had no effect on cold-induced GU in BAT or neck muscles. Training increased aerobic capacity (p = 0.01) and decreased visceral fat (p = 0.02) and cervico-thoracic BAT mass (p = 0.003). Additionally, training decreased very low-density lipoprotein particle size (p = 0.04), triglycerides within chylomicrons (p = 0.04) and small high-density lipoprotein (p = 0.04).ConclusionsAlthough exercise training plays an important role for metabolic health, its beneficial effects on whole body metabolism through physiological adaptations seem to be independent of BAT activation in young, sedentary men.
Project description:Chronic inflammation is considered as an etiology of obesity and type 2 diabetes. Brown adipose tissue (BAT) of obese animals shows increased inflammation. Regular exercise has anti-inflammatory effects; however, the effects of exercise training on BAT inflammation in obese animals remain unclear. Thus, this study aimed to investigate the effects of exercise training on inflammation-related signaling in the BAT of obese and diabetic rats. Male Otsuka Long-Evans Tokushima Fatty (OLETF) rats, an obese/diabetic rodent model, were randomly divided into either sedentary (n = 11) or exercise training (n = 8) groups. Long-Evans Tokushima Otsuka (LETO; n = 9) rats were used as the nondiabetic sedentary controls. Exercise training using a treadmill was conducted 4 days per week for 20 weeks, starting at 5 weeks old. As a result, exercise training attenuated the phosphorylation levels of p65 and mitogen-activated protein kinases in the BAT of OLETF rats, concurrently with the improvement of obesity and systemic glucose tolerance. Moreover, exercise training decreased oxidative stress and increased the antioxidant and anti-inflammatory protein levels in the BAT. Conversely, exercise training did not alter the expression levels of uncoupling protein-1 and oxidative phosphorylation-related proteins in the BAT, which were lower in the OLETF rats than the LETO rats. In conclusion, our data suggest that exercise training prevents the activation of inflammatory signaling in the BAT of obese/diabetic rats.
Project description:Exercise affects whole-body metabolism through adaptations to various tissues, including adipose tissue (AT). Recent studies investigated exercise-induced adaptations to AT, focusing on inguinal white adipose tissue (WAT), perigonadal WAT, and interscapular brown adipose tissue (iBAT). Although these AT depots play important roles in metabolism, they account for only ∼50% of the AT mass in a mouse. Here, we investigated the effects of 3 weeks of exercise training on all 14 AT depots. Exercise induced depot-specific effects in genes involved in mitochondrial activity, glucose metabolism, and fatty acid uptake and oxidation in each adipose tissue (AT) depot. These data demonstrate that exercise training results in unique responses in each AT depot; identifying the depot-specific adaptations to AT in response to exercise is essential to determine how AT contributes to the overall beneficial effect of exercise.
Project description:The aim of the present work was to study the consequences of chronic exercise training on factors involved in the regulation of mitochondrial remodeling and biogenesis, as well as the ability to produce energy and improve insulin sensitivity and glucose uptake in rat brown adipose tissue (BAT). Male Wistar rats were divided into two groups: (1) control group (C; n = 10) and (2) exercise-trained rats (ET; n = 10) for 8 weeks on a motor treadmill (five times per week for 50 min). Exercise training reduced body weight, plasma insulin, and oxidized LDL concentrations. Protein expression of ATP-independent metalloprotease (OMA1), short optic atrophy 1 (S-OPA1), and dynamin-related protein 1 (DRP1) in BAT increased in trained rats, and long optic atrophy 1 (L-OPA1) and mitofusin 1 (MFN1) expression decreased. BAT expression of nuclear respiratory factor type 1 (NRF1) and mitochondrial transcription factor A (TFAM), the main factors involved in mitochondrial biogenesis, was higher in trained rats compared to controls. Exercise training increased protein expression of sirtuin 1 (SIRT1), peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) and AMP-activated protein kinase (pAMPK/AMPK ratio) in BAT. In addition, training increased carnitine palmitoyltransferase II (CPT II), mitochondrial F1 ATP synthase α-chain, mitochondrial malate dehydrogenase 2 (mMDH) and uncoupling protein (UCP) 1,2,3 expression in BAT. Moreover, exercise increased insulin receptor (IR) ratio (IRA/IRB ratio), IRA-insulin-like growth factor 1 receptor (IGF-1R) hybrids and p42/44 activation, and decreased IGF-1R expression and IR substrate 1 (p-IRS-1) (S307) indicating higher insulin sensitivity and favoring glucose uptake in BAT in response to chronic exercise training. In summary, the present study indicates that chronic exercise is able to improve the energetic profile of BAT in terms of increased mitochondrial function and insulin sensitivity.
Project description:In mammals, white adipose tissue (WAT) stores and releases lipids, whereas brown adipose tissue (BAT) oxidizes lipids to fuel thermogenesis. In obese individuals, WAT undergoes profound changes; it expands, becomes dysfunctional, and develops a low-grade inflammatory state. Importantly, BAT content and activity decline in obese subjects, mainly as a result of the conversion of brown adipocytes to white-like unilocular cells. Here, we show that BAT "whitening" is induced by multiple factors, including high ambient temperature, leptin receptor deficiency, β-adrenergic signaling impairment, and lipase deficiency, each of which is capable of inducing macrophage infiltration, brown adipocyte death, and crown-like structure (CLS) formation. Brown-to-white conversion and increased CLS formation were most marked in BAT from adipose triglyceride lipase (Atgl)-deficient mice, where, according to transmission electron microscopy, whitened brown adipocytes contained enlarged endoplasmic reticulum, cholesterol crystals, and some degenerating mitochondria, and were surrounded by an increased number of collagen fibrils. Gene expression analysis showed that BAT whitening in Atgl-deficient mice was associated to a strong inflammatory response and NLRP3 inflammasome activation. Altogether, the present findings suggest that converted enlarged brown adipocytes are highly prone to death, which, by promoting inflammation in whitened BAT, may contribute to the typical inflammatory state seen in obesity.
Project description:1. A group of male Sprague-Dawley rats (5-6 weeks old) was cold-acclimated at 4 degrees C for 4 weeks. Warm-acclimated controls remained at 24 degrees C. Total protein content of brown adipose tissue (BAT) increased more than 3-fold and total uncoupling protein (UCP) content increased more than 6-fold upon cold-acclimation. The concentration of UCP in isolated BAT mitochondria almost doubled. 2. Specific ATPase activity of the non-thermogenic BAT mitochondria (from warm-acclimated controls) was low and increased about 6-fold on addition of 1 microM-Ca2+, which raised free Ca2+ levels (measured by Fura-2) in the incubation media from 1.32 +/- 0.28 microM (mean +/- S.E.M.) to 2.29 +/- 0.39 microM [at which the Ca(2+)-binding ATPase-inhibitor protein (CaBI) is inactivated]. Correspondingly, the specific ATP synthetase activity of the non-thermogenic BAT mitochondria was high and was decreased by 74% by addition of 1 microM-Ca2+. 3. In contrast, specific ATPase activity of thermogenic BAT mitochondria (from cold-acclimated rats) was 5 times that of the control group, and addition of Ca2+ had only a small stimulatory response. Correspondingly, the specific ATP synthetase activity of the thermogenic BAT mitochondria was low, and the decrease by Ca2+ was small, albeit significant. 4. Extracts of BAT mitochondria from both groups of animals contained significant amounts of the ATPase-inhibitor protein of Pullman and Monroy (PMI) as well as of CaBI, as shown by gel electrophoresis. Kinetic studies of inhibition of mitochondrial ATPase activity showed that PMI activity was unaltered in extracts from the thermogenic BAT mitochondria, whereas CaBI activity was slightly but significantly increased. 5. The presence of active ATPase-inhibitor proteins in BAT mitochondria was shown for the first time. We conclude that uncoupling of oxidative phosphorylation occurs in thermogenic BAT mitochondria, even in the presence of the ATPase-inhibitor proteins.
Project description:Background/objectivesThis study aimed to assess the effect of aerobic exercise on capillary density and vascular smooth muscle cell (VSMC) phenotype in the visceral and subcutaneous adipose tissue of high-fat-diet (HFD) mice in order to understand the mechanisms underlying improvements in insulin resistance (IR) and chronic inflammation in adipose tissue (AT).MethodsMale C57BL/6J mice were divided into HFD and normal diet groups for 12 weeks and then further split into sedentary and aerobic exercise subgroups for an additional 8 weeks. Various parameters including body weight, fat weight, blood glucose, lipid profile, insulin levels, glucose tolerance, and inflammatory cytokines were evaluated.ResultsAerobic exercise reduced HFD-induced weight gain, IR, and improved lipid profiles. HFD had a minimal effect on inflammatory cytokines except in visceral adipose tissue (VAT). IR was associated with capillary density in subcutaneous adipose tissue (SAT) and VSMC phenotype in VAT. Aerobic exercise promoted anti-inflammatory responses in VAT, correlating with VSMC phenotype in this tissue.ConclusionsAerobic exercise can alleviate HFD-induced IR and inflammation through the modulation of VSMC phenotype in AT.
Project description:Adipose tissue pathology in obese patients often features impaired adipogenesis, angiogenesis, and chronic low-grade inflammation, all of which are regulated in large part by adipose tissue stromal vascular cells [SVC; i.e., non-adipocyte cells within adipose tissue including preadipocytes, endothelial cells (ECs), and immune cells]. Exercise is known to increase subcutaneous adipose tissue lipolysis, but the impact of exercise on SVCs in adipose tissue has not been explored. The purpose of this study was to assess the effects of a session of exercise on preadipocyte, EC, macrophage, and T cell content in human subcutaneous adipose tissue. We collected abdominal subcutaneous adipose tissue samples from 10 obese adults (BMI 33 ± 3 kg/m2, body fat 41 ± 7%) 12 h after a 60 min acute session of endurance exercise (80 ± 3%HRpeak) vs. no acute exercise session. SVCs were isolated by collagenase digestion and stained for flow cytometry. We found that acute exercise reduced preadipocyte content (38 ± 7 vs. 30 ± 13%SVC; p = 0.04). The reduction was driven by a decrease in CD34hi preadipocytes (18 ± 5 vs. 13 ± 6%SVC; p = 0.002), a subset of preadipocytes that generates high lipolytic rate adipocytes ex vivo. Acute exercise did not alter EC content. Acute exercise also did not change total immune cell, macrophage, or T cell content, and future work should assess the effects of exercise on subpopulations of these cells. We conclude that exercise may rapidly regulate the subcutaneous adipose tissue preadipocyte pool in ways that may help attenuate the high lipolytic rates that are commonly found in obesity.
Project description:Current understanding of in vivo human brown adipose tissue (BAT) physiology is limited by a reliance on positron emission tomography (PET)/computed tomography (CT) scanning, which has measured exogenous glucose and fatty acid uptake but not quantified endogenous substrate utilization by BAT. Six lean, healthy men underwent 18fluorodeoxyglucose-PET/CT scanning to localize BAT so microdialysis catheters could be inserted in supraclavicular BAT under CT guidance and in abdominal subcutaneous white adipose tissue (WAT). Arterial and dialysate samples were collected during warm (∼25°C) and cold exposure (∼17°C), and blood flow was measured by 133xenon washout. During warm conditions, there was increased glucose uptake and lactate release and decreased glycerol release by BAT compared with WAT. Cold exposure increased blood flow, glycerol release, and glucose and glutamate uptake only by BAT. This novel use of microdialysis reveals that human BAT is metabolically active during warm conditions. BAT activation substantially increases local lipolysis but also utilization of other substrates such as glutamate.
Project description:Monocytes are part of the mononuclear phagocytic system. Monocytes play a central role during inflammatory conditions and a better understanding of their dynamics might open therapeutic opportunities. In the present study, we focused on the characterization and impact of monocytes on brown adipose tissue (BAT) functions during tissue remodeling. Single-cell RNA sequencing analysis of BAT immune cells uncovered a large diversity in monocyte and macrophage populations. Fate-mapping experiments demonstrated that the BAT macrophage pool requires constant replenishment from monocytes. Using a genetic model of BAT expansion, we found that brown fat monocyte numbers were selectively increased in this scenario. This observation was confirmed using a CCR2-binding radiotracer and positron emission tomography. Importantly, in line with their tissue recruitment, blood monocyte counts were decreased while bone marrow hematopoiesis was not affected. Monocyte depletion prevented brown adipose tissue expansion and altered its architecture. Podoplanin engagement is strictly required for BAT expansion. Together, these data redefine the diversity of immune cells in the BAT and emphasize the role of monocyte recruitment for tissue remodeling.