Project description:Hodgkin lymphoma (HL) is a malignancy of the lymphatic system with an incidence of 2-3/100.000/year in developed countries. With modern multi-agent chemotherapy protocols optionally combined with radiotherapy (RT), 80% to 90% of HL patients achieve long-term remission and can be considered cured. However, current standard approaches bear a considerable risk for the development of treatment-related late effects. Thus, one major focus of current clinical research in HL is reducing the incidence of these late effects that include heart failure, infertility, chronic fatigue and therapy-related myelodysplastic syndrome/acute myeloid leukemia (t-MDS/t-AML). In previous analyses, t-MDS/t-AML after treatment for HL was associated with a poor prognosis. Nearly all patients died rapidly after diagnosis. However, more recent analyses indicated an improved outcome among patients with t-MDS/t-AML who are eligible for modern anti-leukemic treatment and allogeneic stem cell transplantation (aSCT). This article gives an overview of recent reports on the incidence and the treatment of t-MDS/t-AML after HL therapy and describes the efforts currently made to reduce the risk to develop this severe late effect.
Project description:Non-Hodgkin Lymphoma (NHL) is the most common hematologic malignancy. More than 20,000 people in United States, more than 37,000 people in Europe and more than 199,000 people worldwide die of NHL every year. Recent advances in immunotherapeutic approaches for cancer have resulted in development of new classes of very effective immunotherapeutic approaches including chimeric antigen receptor T (CAR-T) cell therapy that are designed to bypass cancer immune evasion. Here, we review recent advances in CAR-T cell therapy for NHL. US food and drug administration (FDA) recently approved axicabtagene ciloleucel (Yescarta) a CD19 CAR T cell therapy for treatment of relapsed refractory diffuse large B cell lymphoma (DLBCL), high grade lymphoma, and primary mediastinal B cell lymphoma (PMBCL). Approval of Yescarta and rapid development of other CAR T cell therapies at various stages of development are opening up the door for a new wave of CAR T cell therapies that will dramatically change the way we treat NHL and hopefully other malignancies in the near future.
Project description:Two Chimeric Antigen Receptor (CAR) T cell therapies are now approved for the treatment of relapsed and refractory large cell lymphomas, with many others under development. The dawn of CAR T cell therapy in non-Hodgkin Lymphoma (NHL) has been characterized by rapid progress and high response rates, with a subset of patients experiencing durable benefit. In this review, we describe commercially available and investigational CAR T cell therapies, including product characteristics and clinical outcomes. We review patient selection, with an emphasis on sequencing cell therapy options in the refractory setting. Finally, we discuss durability of response, highlighting mechanisms of escape and investigational approaches to prevent and treat relapse after CAR T cell therapy.
Project description:B-cell non-Hodgkin lymphoma (B-NHL) is a group of heterogeneous disease which remains incurable despite developments of standard chemotherapy regimens and new therapeutic agents in decades. Some individuals could have promising response to standard therapy while others are unresponsive to standard chemotherapy or relapse after autologous hematopoietic stem-cell transplantation (ASCT), which indicates the necessity to develop novel therapies for refractory or relapsed B-NHLs. In recent years, a novel cell therapy, chimeric antigen receptor T-cell therapy (CAR-T), was invented to overcome the limitation of traditional treatments. Patients with aggressive B-NHL are considered for CAR-T cell therapy when they have progressive lymphoma after second-line chemotherapy, relapse after ASCT, or require a third-line therapy. Clinical trials of anti-CD19 CAR-T cell therapy have manifested encouraging efficacy in refractory or relapsed B-NHL. However, adverse effects of this cellular therapy including cytokine release syndrome, neurotoxicity, tumor lysis syndrome and on-target, off-tumor toxicities should attract our enough attention despite the great anti-tumor effects of CAR-T cell therapy. Although CAR-T cell therapy has shown remarkable results in patients with B-NHL, the outcomes of patients with B-NHL were inferior to patients with acute lymphoblastic leukemia. The inferior response rate may be associated with physical barrier of lymphoma, tumor microenvironment and low quality of CAR-T cells manufactured from B-NHL patients. Besides, some patients relapsed after anti-CD19 CAR-T cell therapy, which possibly were due to limited CAR-T cells persistence, CD19 antigen escape or antigen down-regulation. Quite a few new antigen-targeted CAR-T products and new-generation CAR-T, for example, CD20-targeted CAR-T, CD79b-targeted CAR-T, CD37-targeted CAR-T, multi-antigen-targeted CAR-T, armored CAR-T and four-generation CAR-T are developing rapidly to figure out these deficiencies.
Project description:B-cell non-Hodgkin lymphoma (NHL) is the most frequent hematologic malignancy. Despite the refinement of chemoimmunotherapy, a substantial number of patients experience chemorefractory disease. Anti-CD19 chimeric antigen receptor (CAR) T-cell therapy is considered the most promising and effective therapy to overcome chemorefractory B-cell NHL. Based on the promising results obtained from pivotal trials, the US Food and Drug Administration and European Medicines Agency approved anti-CD19 CAR T-cell therapy for relapsed/refractory diffuse large B-cell lymphoma. Nonetheless, there remain several controversial issues and problems awaiting solutions, including optimal management of toxicities, overcoming relapsed/refractory disease after CAR T-cell therapy, and improving CAR-T manufacturing platform. Definite unmet medical needs among patients with chemorefractory B-cell NHL still exist. CAR T-cell therapy might be a game changer that can defeat chemorefractory B-cell NHL, and further clinical development is warranted. In this review, we summarize the recent clinical developments, clinical implications, and perspectives of CAR T-cell therapy, focusing on B-cell NHL.
Project description:B-cell non-Hodgkin lymphoma (B-NHL) is the most frequent hematological malignancy. Although refined chemotherapy regimens and several new therapeutics including rituximab, a chimeric anti-CD20 monoclonal antibody, have improved its prognosis in recent decades, there are still a substantial number of patients with chemorefractory B-NHL. Anti-CD19 chimeric antigen receptor (CAR) T-cell therapy is expected to be an effective adoptive cell treatment and has the potential to overcome the chemorefractoriness of B-cell leukemia and lymphoma. Recently, several clinical trials have shown remarkable efficacy of anti-CD19 CAR T-cell therapy, not only in B-acute lymphoblastic leukemia but also in B-NHL. Nonetheless, there are several challenges to overcome before introduction into clinical practice, such as: (i) further refinement of the manufacturing process, (ii) further improvement of efficacy, (iii) finding the optimal infusion cell dose, (iv) optimization of lymphocyte-depleting chemotherapy, (v) identification of the best CAR structure, and (vi) optimization of toxicity management including cytokine release syndrome, neurologic toxicity, and on-target off-tumor toxicity. Several ways to solve these problems are currently under study. In this review, we describe the updated clinical data regarding anti-CD19 CAR T-cell therapy, with a focus on B-NHL, and discuss the clinical implications and perspectives of CAR T-cell therapy.
Project description:Resistance to conventional lines of therapy develops in approximately 20% of all patients with lymphoma. These patients have a dismal prognosis, with an expected median survival of 6.3 months. In recent years, T-cell immunotherapy has demonstrated a remarkable capacity to induce complete and durable clinical responses in patients with chemotherapy-refractory lymphoma. A major contributor to the success of immunotherapy has been the advent of genetic engineering technologies that introduce a chimeric antigen receptor (CAR) into T cells to focus their killing activity on tumor cells. The adoptive transfer of autologous CAR T-cell products specific for the pan-B-cell antigen CD19 have now received approval from the US Food and Drug Administration (FDA) for the treatment of relapsed or chemotherapy-resistant B-cell non-Hodgkin lymphoma. This review is designed to showcase the clinical efficacy and unique toxicities of individually developed CAR T-cell products for the treatment of lymphomas and their evolution from the laboratory bench to commercialization.
Project description:Lymphoma patients treated with autologous transplantation (ASCT) live an increasingly long life with the recent advancement in therapeutic modalities. This has resulted in an increase in the incidence of therapy-related myeloid neoplasms (t-MN), which is one of the leading causes of non-relapse mortality. Several observational studies have linked the development of t-MN after ASCT with the intensity and frequency of chemotherapy, particularly alkylating agents, use of total body irradiation (TBI), and peripheral blood progenitor cells. In addition, role of genetic factors is increasingly being identified. It is postulated that the use of chemotherapy prior to ASCT results in DNA damage of progenitor cells, mitochondrial dysfunction, and altered gene expression related to DNA repair, metabolism as well as hematopoietic regulation. Cytogenetic studies have shown the presence of abnormalities in the peripheral blood progenitor cells prior to ASCT. It is, therefore, likely that the reinfusion of peripheral blood progenitor cells, proliferative stress on infused progenitor cells during hematopoietic regeneration and associated telomere shortening ultimately result in clonal hematopoiesis and blastic transformation. Cytopenias, myelodysplasia, or cytogenetic abnormalities are common and can be transient after ASCT; therefore, only when present together, they do confirm the diagnosis of t-MN. Attempts to reduce the occurrence of t-MN should be directed toward minimizing the exposure to the identified risk factors. Although the median survival is few months to less than a year, studies have shown the promising role of allogeneic transplantation in select young t-MN patients without high-risk cytogenetics. In this review we will explain the recent findings in the field of t-MN in lymphoma patients that have implications for identifying the molecular and genetic mechanisms of leukemogenesis and discuss potential strategies to reduce the risk of t-MN in this patient population.
Project description:Opinion statementThe therapeutic armamentarium has significantly expanded since the approval of various CD19-targeting chimeric antigen receptor T cell (CAR-T) therapies in non-Hodgkin lymphoma (NHL). These CAR-Ts are patient-specific and require a complex, resource, and time-consuming process. While this appears promising, autologous CAR-Ts are limited due to the lack of accessibility, manufacturing delays, and variable product quality. To overcome these, allogeneic (allo) CARs from healthy donors appear appealing. These can be immediately available as "off the shelf" ready-to-use products of standardized and superior quality exempt from the effects of an immunosuppressive tumor microenvironment and prior treatments, and potentially with lower healthcare utilization using industrialized scale production. Allogeneic CARs, however, are not devoid of complications and require genomic editing, especially with αβ T cells to avoid graft versus host disease (GvHD) and allo-rejection by the recipient's immune system. Tools for genomic editing such as TALEN and CRISPR provide promise to develop truly "off the shelf" universal CARs and further advance the field of cellular immunotherapy. Several allogeneic CARs are currently in early phase clinical trials, and preliminary data is encouraging. Longer follow-up is required to truly assess the feasibility and safety of these techniques in the patients. This review focuses on the strategies for developing allogeneic CARs along with cell sources and clinical experience thus far in lymphoma.