Project description:BackgroundIsavuconazole is an antifungal drug used for treatment of invasive fungal infections. Critically ill COVID-19 and influenza patients require extracorporeal membrane oxygenation (ECMO) in cases with severe acute respiratory distress syndrome and have risk factors for invasive pulmonary aspergillosis. Little is known about isavuconazole plasma concentrations during ECMO.ObjectivesTo determine isavuconazole plasma concentrations in seven patients treated with intravenous isavuconazole under ECMO and the influence of the ECMO circuit immediately after the first isavuconazole dose.MethodsCritically ill patients treated with isavuconazole (standard doses) and ECMO were included in this study. Sixty-four blood samples used for measurement of isavuconazole concentrations were collected at several timepoints starting 2 h after the first isavuconazole dose up to 168 h. An additional 27 blood samples were drawn from the inflow and outflow line of the membrane oxygenator to assess any potential isavuconazole clearance effect of the ECMO oxygenation device and the lines.ResultsMedian isavuconazole trough levels above 1 μg/mL (min. 0.83, max. 1.73) or 2 μg/mL (min. 0.84, max. 2.97) were achieved 24 h or 96 h after the first dose of isavuconazole. The isavuconazole plasma concentrations pre (inflow line) and post (outflow line) the membrane oxygenator were directly correlated (ρ = 0.987, R2 = 0.994, P < 0.001). Post membrane oxygenator isavuconazole concentrations were directly correlated to contemporaneous samples obtained from the arterial lines of patients (ρ = 0.942, R2 = 0.945, P < 0.001).ConclusionsIsavuconazole concentrations might be influenced by the higher volume of distribution due to ECMO therapy, but were not altered by the ECMO oxygenator and achieved median plasma concentrations >1 μg/mL 24 h after the first loading dose.
Project description:Effective dosing of isavuconazole in patients supported by extracorporeal membrane oxygenation (ECMO) is important due to the role of isavuconazole as a first-line treatment in patients with influenza- and COVID-19-associated pulmonary aspergillosis. To date, robust pharmacokinetic data in patients supported by ECMO are limited. Therefore, it is unknown whether ECMO independently impacts isavuconazole exposure. We measured isavuconazole plasma concentrations in two patients supported by ECMO and estimated individual pharmacokinetic parameters using non-compartmental analysis and two previously published population pharmacokinetic models. Furthermore, a narrative literature review on isavuconazole exposure in adult patients receiving ECMO was performed. The 24 h areas under the concentration-time curve and trough concentrations of isavuconazole were lower in both patients compared with exposure values published before. In the literature, highly variable isavuconazole concentrations have been documented in patients with ECMO support. The independent effect of ECMO versus critical illness itself on isavuconazole exposure cannot be deduced from our and previously published (case) reports. Pending additional data, therapeutic drug monitoring is recommended in critically ill patients, regardless of ECMO support.
Project description:Prognosis for cardiogenic shock patients under ECMO was our study goal. Success defined as survived more than 7 days after ECMO installation and failure died or had multiple organ failure in 7 days. Total 34 cases were enrolled, 17 success and 17 failure. Peripheral blood mononuclear cells collected at ECMO installation 0, 2 hours and removal were analyzed.
Project description:Prognosis for cardiogenic shock patients under ECMO was our study goal. Success defined as survived more than 7 days after ECMO installation and failure died or had multiple organ failure in 7 days. Total 34 cases were enrolled, 17 success and 17 failure. Peripheral blood mononuclear cells collected at ECMO installation 0hr, 2hr and removal were used analyzed.
Project description:Prognosis for cardiogenic shock patients under ECMO was our study goal. Success defined as survived more than 7 days after ECMO installation and failure died or had multiple organ failure in 7 days. Total 34 cases were enrolled, 17 success and 17 failure. Peripheral blood mononuclear cells collected at ECMO installation were used analyzed.
Project description:The aim of this study was to determine if plasma cyclohexanone and metabolites are associated with clinical outcomes of children on extracorporeal membrane oxygenation (ECMO) support. We performed a secondary analysis of a prospective observational study of children on ECMO support at two academic centers between July 2010 and June 2015. We measured plasma cyclohexanone and metabolites on the first and last days of ECMO support. Unfavorable outcome was defined as in-hospital death or discharge Pediatric Cerebral Performance Category score > 2 or decline ≥ 1 from baseline. Among 90 children included, 49 (54%) had unfavorable outcome at discharge. Cyclohexanediol, a cyclohexanone metabolite, was detected in all samples and at both time points; concentrations on the first ECMO day were significantly higher in those with unfavorable versus favorable outcome at hospital discharge (median, 5.7 ng/µl; interquartile range [IQR], 3.3-10.6 ng/µl vs. median, 4.2 ng/µl; IQR, 1.7-7.3 ng/µl; p = 0.04). Twofold higher cyclohexanediol concentrations on the first ECMO day were associated with increased risk of unfavorable outcome at hospital discharge (multivariable-adjusted hazard ratio [HR], 1.24 [95% CI, 1.05-1.48]). Higher cyclohexanediol concentrations on the first ECMO day were not significantly associated with new abnormal neuroimaging or 1-year Vineland Adaptive Behavior Scales-II score < 85 or death among survivors.
Project description:Extracorporeal membrane oxygenation (ECMO) is an advanced form of life support technology whereby venous blood is oxygenated outside of the body and returned to the patient. ECMO was initially used as last-resort rescue therapy for patients with severe respiratory failure. Over the last four decades, it has developed into a safe, standard therapy for newborns with progressive cardiorespiratory failure, as a resuscitation therapy after cardiac arrest, and in combination with other treatments such as hypothermia and various blood filtration therapies. ECMO has also become routine for children and adults with all forms of cardiogenic shock and is also routine in early graft failure after transplantation. The one area of ongoing debate is the role of ECMO in adults with hypoxemic respiratory failure. As ECMO equipment becomes safer, earlier use improves patient outcomes. Several modifications of the two basic venovenous and venoarterial ECMO systems are now occurring, as are many minor variations in cannulation strategies and systems of care for patients receiving ECMO. The indications and situations in which ECMO have been tried continue to change, and ECMO for sub-acute and chronic illnesses is now commonplace, as is the use of ECMO in patients with clinical problems previously regarded as contraindications, such as sepsis, malignancy, and immunosuppression.
Project description:BackgroundDexmedetomidine is a sedative and analgesic increasingly used in children supported with extracorporeal membrane oxygenation (ECMO). No data is available to describe the pharmacokinetics (PK) of dexmedetomidine in this population.MethodsWe performed a single-center prospective PK study. Children <18 years old, supported with ECMO, and on a dexmedetomidine infusion as part of their management were prospectively included. PK samples were collected. Dexmedetomidine dosing remained at the discretion of the clinical team. Six population PK models built in pediatrics were selected. Observed concentrations were compared with population predicted concentrations using the PK models.ResultsEight children contributed 30 PK samples. None of the PK models evaluated predicted the concentrations with acceptable precision and bias. Four of the six evaluated models overpredicted the concentrations. The addition of a correction factor on clearance improved models' fit. Two of the evaluated models were not applicable to our whole population age range because of their structure.ConclusionMost of the evaluated PK models overpredicted the concentrations, potentially indicating increased clearance on ECMO. Population PK models applicable to a broad spectrum of ages and pathologies are more practical in pediatric critical care settings but challenging to develop.
Project description:The literature on the pharmacokinetics of vancomycin in patients undergoing extracorporeal membrane oxygenation (ECMO) therapy is sparse. A population pharmacokinetic (PK) model for vancomycin in ECMO patients was developed using a nonlinear mixed effects modeling on the concentration-time profiles of 14 ECMO patients who received intravenous vancomycin. Model selection was based on log-likelihood criterion, goodness of fit plots, and scientific plausibility. Identification of covariates was done using a full covariate model approach. The pharmacokinetics of vancomycin was adequately described with a two-compartment model. Parameters included clearance of 2.83 L/hr, limited central volume of distribution 24.2 L, and low residual variability 0.67%. Findings from the analysis suggest that standard dosing recommendations for vancomycin in non-ECMO patients are adequate to achieve therapeutic trough concentrations in ECMO patients. This further shows that ECMO minimally affects the PK of vancomycin in adults including in higher-weight patients.