Project description:Ab initio molecular dynamics simulations have been performed in order to investigate the relaxation dynamics of uracil after UV excitation in gas phase. Intersystem crossing (ISC) has been included for the first time into time-dependent simulations of uracil, allowing the system to relax in the singlet as well as in the triplet states. The results show a qualitatively different picture than similar simulations that include singlet states only. The inclusion of ISC effectively quenches the relaxation to the singlet ground state and instead privileges transitions from the low-lying nπ* state (S1) to a ππ* triplet state (T2) followed by rapid internal conversion to the lowest triplet state.
Project description:Nitronaphthalene derivatives efficiently populate their electronically excited triplet states upon photoexcitation through ultrafast intersystem crossing (ISC). Despite having been studied extensively by time-resolved spectroscopy, the reasons behind their ultrafast ISC remain unknown. Herein, we present the first ab initio nonadiabatic molecular dynamics study of a nitronaphthalene derivative, 2-nitronaphthalene, including singlet and triplet states. We find that there are two distinct ISC reaction pathways involving different electronic states at distinct nuclear configurations. The high ISC efficiency is explained by the very small electronic and nuclear alterations that the chromophore needs to undergo during the singlet-triplet transition in the dominating ISC pathway after initial dynamics in the singlet manifold. The insights gained in this work are expected to shed new light on the photochemistry of other nitro polycyclic aromatic hydrocarbons that exhibit ultrafast intersystem crossing.
Project description:ortho-Nitrobenzaldehyde (oNBA) is a well-known photoactivated acid and a prototypical photolabile nitro-aromatic compound. Despite extensive investigations, the ultrafast relaxation dynamics of oNBA is still not properly understood, especially concerning the role of the triplet states. In this work, we provide an in-depth picture of this dynamics by combining single- and multireference electronic structure methods with potential energy surface exploration and nonadiabatic dynamics simulations using the Surface Hopping including ARbitary Couplings (SHARC) approach. Our results reveal that the initial decay from the bright ππ* state to the S1 minimum is barrierless. It involves three changes in electronic structure from ππ* (ring) to nπ* (nitro group), to nπ* (aldehyde group), and then to another nπ* (nitro group). The decay of the ππ* takes 60-80 fs and can be tracked with time-resolved luminescence spectroscopy, where we predict for the first time a short-lived coherence of the luminescence energy with a 25 fs period. Intersystem crossing can occur already during the S4 → S1 deactivation cascade but also from S1, with a time constant of about 2.4 ps and such that first a triplet ππ* state localized on the nitro group is populated. The triplet population first evolves into an nπ* and then quickly undergoes hydrogen transfer to form a biradical intermediate, from where the ketene is eventually produced. The majority of the excited population decays from S1 through two conical intersections of equal utilization, a previously unreported one involving a scissoring motion of the nitro group that leads back to the oNBA ground state and the one involving hydrogen transfer that leads to the ketene intermediate.
Project description:The development of efficient organic light-emitting diodes (OLED) and organic photovoltaic cells requires control over the dynamics of spin sensitive excitations. Embedding heavy metal atoms in ?-conjugated polymer chains enhances the spin-orbit coupling (SOC), and thus facilitates intersystem crossing (ISC) from the singlet to triplet manifolds. Here we use various nonlinear optical spectroscopies such as two-photon absorption and electroabsorption in conjunction with electronic structure calculations, for studying the energies, emission bands and ultrafast dynamics of spin photoexcitations in two newly synthesized ?-conjugated polymers that contain intrachain platinum (Pt) atoms separated by one (Pt-1) or three (Pt-3) organic spacer units. The controllable SOC in these polymers leads to a record ISC time of <~1?ps in Pt-1 and ~6?ps in Pt-3. The tunable ultrafast ISC rate modulates the intensity ratio of the phosphorescence and fluorescence emission bands, with potential applications for white OLEDs.
Project description:We investigate the ultrafast transient absorption response of tetrakis(μ-pyrophosphito)diplatinate(II), [Pt2(μ-P2O5H2)4]4- [hereafter abbreviated Pt(pop)], in acetonitrile upon excitation of its lowest singlet 1A2u state. Compared with previously reported solvents [van der Veen RM, Cannizzo A, van Mourik F, Vlček A, Jr, Chergui M (2011) J Am Chem Soc 133:305-315], a significant shortening of the intersystem crossing (ISC) time (<1 ps) from the lowest singlet to the lowest triplet state is found, allowing for a transfer of vibrational coherence, observed in the course of an ISC in a polyatomic molecule in solution. Density functional theory (DFT) quantum mechanical/molecular mechanical (QM/MM) simulations of Pt(pop) in acetonitrile and ethanol show that high-lying, mostly triplet, states are strongly mixed and shifted to lower energies due to interactions with the solvent, providing an intermediate state (or manifold of states) for the ISC. This suggests that the larger the solvation energies of the intermediate state(s), the shorter the ISC time. Because the latter is smaller than the pure dephasing time of the vibrational wave packet, coherence is conserved during the spin transition. These results underscore the crucial role of the solvent in directing pathways of intramolecular energy flow.
Project description:2,5-Bis(phenylethynyl) rhodacyclopentadienes (RCPDs), as a type of Rh(iii) complex, exhibit unusually intense fluorescence and slow intersystem crossing (ISC) due to weak metal-ligand interactions. However, details on their ultrafast photophysics and ISC dynamics are limited. In this work, electronic relaxation upon photoexcitation of two substituted RCPDs with two -CO2Me (A-RC-A) or -NMe2/-CO2Me (D-RC-A) end groups are comprehensively investigated using femtosecond transient absorption spectroscopy and theoretical analysis. Upon ultraviolet and visible excitation, dephasing of vibrational coherence, charge transfer, conformation relaxation, and ISC are observed experimentally. By calculating the spin-orbit coupling, reorganization energy, and adiabatic energy gap of plausible ISC channels, semi-classical Marcus theory revealed the dominance of thermally activated ISC (S1 → T2) for both D-RC-A and A-RC-A, while S1 → T1 channels are largely blocked due to high ISC barriers. With weak spin-orbit coupling, such differences in plausible ISC channels are predominately tuned by energetic parameters. Singlet oxygen sensitization studies of A-RC-A provide additional insight into the excited-state behavior of this complex.
Project description:Transition metal-based charge-transfer complexes represent a broad class of inorganic compounds with diverse photochemical applications. Charge-transfer complexes based on earth-abundant elements have been of increasing interest, particularly the canonical [Fe(bpy)3]2+. Photoexcitation into the singlet metal-ligand charge transfer (1MLCT) state is followed by relaxation first to the ligand-field manifold and then to the ground state. While these dynamics have been well-studied, processes within the MLCT manifold that facilitate and/or compete with relaxation have been more elusive. We applied ultrafast two-dimensional electronic spectroscopy (2DES) to disentangle the dynamics immediately following MLCT excitation of this compound. First, dynamics ascribed to relaxation out of the initially formed 1MLCT state was found to correlate with the inertial response time of the solvent. Second, the additional dimension of the 2D spectra revealed a peak consistent with a ∼20 fs 1MLCT → 3MLCT intersystem crossing process. These two observations indicate that the complex simultaneously undergoes intersystem crossing and direct conversion to ligand-field state(s). Resolution of these parallel pathways in this prototypical earth-abundant complex highlights the ability of 2DES to deconvolve the otherwise obscured excited-state dynamics of charge-transfer complexes.
Project description:The electronic excited states of the iron(II) complex [FeII(tpy)(pyz-NHC)]2+ [tpy = 2,2':6',2″-terpyridine; pyz-NHC = 1,1'-bis(2,6-diisopropylphenyl)pyrazinyldiimidazolium-2,2'-diylidene] and their relaxation pathways have been theoretically investigated. To this purpose, trajectory surface-hopping simulations within a linear vibronic coupling model including a 244-dimensional potential energy surface (PES) with 20 singlet and 20 triplet coupled states have been used. The simulations show that, after excitation to the lowest-energy absorption band of predominant metal-to-ligand charge-transfer character involving the tpy ligand, almost 80% of the population undergoes intersystem crossing to the triplet manifold in about 50 fs, while the remaining 20% decays through internal conversion to the electronic ground state in about 300 fs. The population transferred to the triplet states is found to deactivate into two different regions of the PESs, one where the static dipole moment is small and shows increased metal-centered character and another with a large static dipole moment, where the electron density is transferred from the tpy to pyz-NHC ligand. Coherent oscillations of 400 fs are observed between these two sets of triplet populations, until the mixture equilibrates to a ratio of 60:40. Finally, the importance of selecting suitable normal modes is highlighted-a choice that can be far from straightforward in transition-metal complexes with hundreds of degrees of freedom.
Project description:The O((3)P) + C(2)H(4) reaction, of importance in combustion and atmospheric chemistry, stands out as a paradigm reaction involving triplet- and singlet-state potential energy surfaces (PESs) interconnected by intersystem crossing (ISC). This reaction poses challenges for theory and experiments owing to the ruggedness and high dimensionality of these potentials, as well as the long lifetimes of the collision complexes. Primary products from five competing channels (H + CH(2)CHO, H + CH(3)CO, H(2) + CH(2)CO, CH(3) + HCO, CH(2) + CH(2)O) and branching ratios (BRs) are determined in crossed molecular beam experiments with soft electron-ionization mass-spectrometric detection at a collision energy of 8.4 kcal/mol. As some of the observed products can only be formed via ISC from triplet to singlet PESs, from the product BRs the extent of ISC is inferred. A new full-dimensional PES for the triplet state as well as spin-orbit coupling to the singlet PES are reported, and roughly half a million surface hopping trajectories are run on the coupled singlet-triplet PESs to compare with the experimental BRs and differential cross-sections. Both theory and experiment find almost equal contributions from the two PESs to the reaction, posing the question of how important is it to consider the ISC as one of the nonadiabatic effects for this and similar systems involved in combustion chemistry. Detailed comparisons at the level of angular and translational energy distributions between theory and experiment are presented for the two primary channel products, CH(3) + HCO and H + CH(2)CHO. The agreement between experimental and theoretical functions is excellent, implying that theory has reached the capability of describing complex multichannel nonadiabatic reactions.
Project description:This work investigates intersystem crossing (ISC) induced by spin-orbit coupling (SOC) in state-of-the-art non-fullerene acceptors (NFAs). A quantum chemistry study analyzed SOC in 10 NFAs using the optimized geometry of the ground state (OGGS), revealing the importance of excited-state character (local or charge transfer) in determining SOC. However, ISC rates calculated with Marcus formalism were significantly lower than experimental values, showing that the three-state model (S1, T1, and T2) is insufficient. A simplified method to calculate coupled probabilities was proposed, leveraging a quantum walk on a one-dimensional graph. This approach aligned ISC rates with experimental data and explained Y6's higher triplet state efficiency compared to ITIC-like NFAs. Further, the dihedral angle (ϕ) in IT-4Cl and Y6 was analyzed. Y6's unique excited-state potential energy curve (PEC) showed a minimum at ϕ ≈ 90o. Using PECs, ISC rates were refined, showing coupling via ϕ vibrations. Finally, the Wentzel-Kramers-Brillouin (WKB) approximation explained Y6's photoluminescence at low temperatures, highlighting non-adiabatic phenomena crucial for understanding the photophysics of organic semiconductors. Triplet states act as channels that enhance recombination, reducing the optoelectronic efficiency of semiconductor devices. Therefore, understanding and controlling these states can contribute to improving the efficiency of organic solar cells (OSCs) and organic light-emitting diodes (OLEDs).