ARHGEF2/EDN1 pathway participates in ER stress-related drug resistance of hepatocellular carcinoma by promoting angiogenesis and malignant proliferation.
Ontology highlight
ABSTRACT: Endoplasmic reticulum (ER) stress is widely involved in the drug resistance of hepatocellular carcinoma (HCC), but the mechanism of ER stress-induced drug resistance involves multiple signaling pathways that cannot be fully explained. Exploring genes associated with ER stress could yield a novel therapeutic target for ER stress-induced drug resistance. By analyzing RNA-sequencing, ATAC-sequencing, and Chip-sequencing data of Tunicamycin (TM)-treated or untreated HCC cells, we found that Rho guanine nucleotide exchange factor 2 (ARHGEF2) is upregulated in HCC cells with ER stress. ARHGEF2 plays an active role in tumor malignant progression. Notwithstanding, no research has been done on the link between ER stress and ARHGEF2. The function of ARHGEF2 as a novel downstream effector of ER stress in the angiogenesis and treatment resistance of HCC was revealed in this work. ARHGEF2 overexpression was linked to malignant development and a poor prognosis in HCC. ER stress stimulates the expression of ARHGEF2 through upregulation of ZNF263. Elevated ARHGEF2 accelerates HCC angiogenesis via the EDN1 pathway, enhances HCC cell proliferation and tumor growth both in vitro and in vivo, and contributes to ER stress-related treatment resistance. HCC cell growth was more inhibited when ARHGEF2 knockdown was paired with targeted medicines. Collectively, we uncovered a previously hidden mechanism where ARHGEF2/EDN1 pathway promotes angiogenesis and participates in ER stress-related drug resistance in HCC.
SUBMITTER: Zhu Y
PROVIDER: S-EPMC9329363 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA