Unknown

Dataset Information

0

The potential use of mesenchymal stem cells and their exosomes in Parkinson's disease treatment.


ABSTRACT: Parkinson's disease (PD) is the second most predominant neurodegenerative disease worldwide. It is recognized clinically by severe complications in motor function caused by progressive degeneration of dopaminergic neurons (DAn) and dopamine depletion. As the current standard of treatment is focused on alleviating symptoms through Levodopa, developing neuroprotective techniques is critical for adopting a more pathology-oriented therapeutic approach. Regenerative cell therapy has provided us with an unrivalled platform for evaluating potentially effective novel methods for treating neurodegenerative illnesses over the last two decades. Mesenchymal stem cells (MSCs) are most promising, as they can differentiate into dopaminergic neurons and produce neurotrophic substances. The precise process by which stem cells repair neuronal injury is unknown, and MSC-derived exosomes are suggested to be responsible for a significant portion of such effects. The present review discusses the application of mesenchymal stem cells and MSC-derived exosomes in PD treatment.

SUBMITTER: Heris RM 

PROVIDER: S-EPMC9331055 | biostudies-literature | 2022 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

The potential use of mesenchymal stem cells and their exosomes in Parkinson's disease treatment.

Heris Reza Mosaddeghi RM   Shirvaliloo Milad M   Abbaspour-Aghdam Sanaz S   Hazrati Ali A   Shariati Ali A   Youshanlouei Hamed Rahmani HR   Niaragh Farhad Jadidi FJ   Valizadeh Hamed H   Ahmadi Majid M  

Stem cell research & therapy 20220728 1


Parkinson's disease (PD) is the second most predominant neurodegenerative disease worldwide. It is recognized clinically by severe complications in motor function caused by progressive degeneration of dopaminergic neurons (DAn) and dopamine depletion. As the current standard of treatment is focused on alleviating symptoms through Levodopa, developing neuroprotective techniques is critical for adopting a more pathology-oriented therapeutic approach. Regenerative cell therapy has provided us with  ...[more]

Similar Datasets

| S-EPMC8224994 | biostudies-literature
| S-EPMC7920810 | biostudies-literature
| S-EPMC9869323 | biostudies-literature
| S-EPMC7473478 | biostudies-literature
| S-EPMC7512102 | biostudies-literature
| S-EPMC6170837 | biostudies-literature
| S-EPMC3584660 | biostudies-other
| S-EPMC7306412 | biostudies-literature
| S-EPMC7047039 | biostudies-literature
| S-EPMC4220146 | biostudies-literature