Project description:Interactions of a membrane protein with a detergent micelle represent a fundamental process with practical implications in structural and chemical biology. Quantitative assessment of the kinetics of protein-detergent complex (PDC) interactions has always been challenged by complicated behavior of both membrane proteins and solubilizing detergents in aqueous phase. Here, we show the kinetic reads of the desorption of maltoside-containing detergents from β-barrel membrane proteins. Using steady-state fluorescence polarization (FP) anisotropy measurements, we recorded real-time, specific signatures of the PDC interactions. The results of these measurements were used to infer the model-dependent rate constants of association and dissociation of the proteomicelles. Remarkably, the kinetics of the PDC interactions depend on the overall protein charge despite the nonionic nature of the detergent monomers. In the future, this approach might be employed for high-throughput screening of kinetic fingerprints of different membrane proteins stabilized in micelles that contain mixtures of various detergents.
Project description:In vitro studies have shown that the phosphoprotein osteopontin (OPN) inhibits the nucleation and growth of hydroxyapatite (HA) and other biominerals. In vivo, OPN is believed to prevent the calcification of soft tissues. However, the nature of the interaction between OPN and HA is not understood. In the computational part of the present study, we used molecular dynamics simulations to predict the adsorption of 19 peptides, each 16 amino acids long and collectively covering the entire sequence of OPN, to the {100} face of HA. This analysis showed that there is an inverse relationship between predicted strength of adsorption and peptide isoelectric point (P<0.0001). Analysis of the OPN sequence by PONDR (Predictor of Naturally Disordered Regions) indicated that OPN sequences predicted to adsorb well to HA are highly disordered. In the experimental part of the study, we synthesized phosphorylated and non-phosphorylated peptides corresponding to OPN sequences 65-80 (pSHDHMDDDDDDDDDGD) and 220-235 (pSHEpSTEQSDAIDpSAEK). In agreement with the PONDR analysis, these were shown by circular dichroism spectroscopy to be largely disordered. A constant-composition/seeded growth assay was used to assess the HA-inhibiting potencies of the synthetic peptides. The phosphorylated versions of OPN65-80 (IC(50) = 1.93 microg/ml) and OPN220-235 (IC(50) = 1.48 microg/ml) are potent inhibitors of HA growth, as is the nonphosphorylated version of OPN65-80 (IC(50) = 2.97 microg/ml); the nonphosphorylated version of OPN220-235 has no measurable inhibitory activity. These findings suggest that the adsorption of acidic proteins to Ca2+-rich crystal faces of biominerals is governed by electrostatics and is facilitated by conformational flexibility of the polypeptide chain.
Project description:An improved knowledge of protein-protein interactions is essential for better understanding of metabolic and signaling networks, and cellular function. Progress tends to be based on structure determination and predictions using known structures, along with computational methods based on evolutionary information or detailed atomistic descriptions. We hypothesized that for the case of interactions across a common interface, between proteins from a pair of paralogue families or within a family of paralogues, a relatively simple interface description could distinguish between binding and non-binding pairs. Using binding data for several systems, and large-scale comparative modeling based on known template complex structures, it is found that charge-charge interactions (for groups bearing net charge) are generally a better discriminant than buried non-polar surface. This is particularly the case for paralogue families that are less divergent, with more reliable comparative modeling. We suggest that electrostatic interactions are major determinants of specificity in such systems, an observation that could be used to predict binding partners.
Project description:Electric fields often play a role in guiding the association of protein complexes. Such interactions can be further engineered to accelerate complex association, resulting in protein systems with increased productivity. This is especially true for enzymes where reaction rates are typically diffusion limited. To facilitate quantitative comparisons of electrostatics in protein families and to describe electrostatic contributions of individual amino acids, we previously developed a computational framework called AESOP. We now implement this computational tool in Python with increased usability and the capability of performing calculations in parallel. AESOP utilizes PDB2PQR and Adaptive Poisson-Boltzmann Solver to generate grid-based electrostatic potential files for protein structures provided by the end user. There are methods within AESOP for quantitatively comparing sets of grid-based electrostatic potentials in terms of similarity or generating ensembles of electrostatic potential files for a library of mutants to quantify the effects of perturbations in protein structure and protein-protein association.
Project description:A novel geometric-electrostatic docking algorithm is presented, which tests and quantifies the electrostatic complementarity of the molecular surfaces together with the shape complementarity. We represent each molecule to be docked as a grid of complex numbers, storing information regarding the shape of the molecule in the real part and information regarding the electrostatic character of the molecule in the imaginary part. The electrostatic descriptors are derived from the electrostatic potential of the molecule. Thus, the electrostatic character of the molecule is represented as patches of positive, neutral, or negative values. The potential for each molecule is calculated only once and stored as potential spheres adequate for exhaustive rotation/translation scans. The geometric-electrostatic docking algorithm is applied to 17 systems, starting form the structures of the unbound molecules. The results-in terms of the complementarity scores of the nearly correct solutions, their ranking in the lists of sorted solutions, and their statistical uniqueness-are compared with those of geometric docking, showing that the inclusion of electrostatic complementarity in docking is very important, in particular in docking of unbound structures. Based on our results, we formulate several "good electrostatic docking rules": The geometric-electrostatic docking procedure is more successful than geometric docking when the potential patches are large and when the potential extends away from the molecular surface and protrudes into the solvent. In contrast, geometric docking is recommended when the electrostatic potential around the molecules to be docked appears homogeneous, that is, with a similar sign all around the molecule.
Project description:We have developed a method that predicts Protein-Protein Interactions (PPIs) based on the similarity of the context in which proteins appear in literature. This method outperforms previously developed PPI prediction algorithms that rely on the conjunction of two protein names in MEDLINE abstracts. We show significant increases in coverage (76% versus 32%) and sensitivity (66% versus 41% at a specificity of 95%) for the prediction of PPIs currently archived in 6 PPI databases. A retrospective analysis shows that PPIs can efficiently be predicted before they enter PPI databases and before their interaction is explicitly described in the literature. The practical value of the method for discovery of novel PPIs is illustrated by the experimental confirmation of the inferred physical interaction between CAPN3 and PARVB, which was based on frequent co-occurrence of both proteins with concepts like Z-disc, dysferlin, and alpha-actinin. The relationships between proteins predicted by our method are broader than PPIs, and include proteins in the same complex or pathway. Dependent on the type of relationships deemed useful, the precision of our method can be as high as 90%. The full set of predicted interactions is available in a downloadable matrix and through the webtool Nermal, which lists the most likely interaction partners for a given protein. Our framework can be used for prioritizing potential interaction partners, hitherto undiscovered, for follow-up studies and to aid the generation of accurate protein interaction maps.
Project description:Specific interactions of the genome with the nuclear lamina (NL) are thought to assist chromosome folding inside the nucleus and to contribute to the regulation of gene expression. High-resolution mapping has recently identified hundreds of large, sharply defined lamina-associated domains (LADs) in the human genome, and suggested that the insulator protein CTCF may help to demarcate these domains. Here, we report the detailed structure of LADs in Drosophila cells, and investigate the putative roles of five insulator proteins in LAD organization. We found that the Drosophila genome is also organized in discrete LADs, which are about five times smaller than human LADs but contain on average a similar number of genes. Systematic comparison to new and published insulator binding maps shows that only SU(HW) binds preferentially at LAD borders and at specific positions inside LADs, while GAF, CTCF, BEAF-32 and DWG are mostly absent from these regions. By knockdown and overexpression studies we demonstrate that SU(HW) weakens genome - NL interactions through a local antagonistic effect, but we did not obtain evidence that it is essential for border formation. Our results provide insights into the evolution of LAD organization and identify SU(HW) as a fine-tuner of genome - NL interactions.
Project description:Solvent plays a significant role in determining the electrostatic potential energy of proteins, most notably through its favorable interactions with charged residues and its screening of electrostatic interactions. These energetic contributions are frequently ignored in computational protein design and protein modeling methodologies because they are difficult to evaluate rapidly and accurately. To address this deficiency, we report a revised form of the original Tanford-Kirkwood continuum electrostatic model [Tanford, C. & Kirkwood, J. G. (1957) J. Am. Chem. Soc. 79, 5333-5339], which accounts for the effects of solvent polarization on charged atoms in proteins. The Tanford-Kirkwood model was modified to increase its speed and to improve its sensitivity to the details of protein structure. For the 37 electrostatic self-energies of the polar side-chains in bovine pancreatic trypsin inhibitor, and their 666 interaction energies, the modified Tanford-Kirkwood potential of mean force differs from a computationally intensive numerical potential (DelPhi) by root-mean-square errors of 0.6 kcal/mol and 0.08 kcal/mol, respectively. The Tanford-Kirkwood approach makes possible a realistic treatment of electrostatics in computationally demanding protein modeling calculations. For example, pH titration calculations for ovomucoid third domain that model polar side-chain relaxation (including >2 x 10(23) rotamer conformations of the protein) provide pKa values of unprecedented accuracy.
Project description:BackgroundDatabases of literature-curated protein-protein interactions (PPIs) are often used to interpret high-throughput interactome mapping studies and estimate error rates. These databases combine interactions across thousands of published studies and experimental techniques. Because the tendency for two proteins to interact depends on the local conditions, this heterogeneity of conditions means that only a subset of database PPIs are interacting during any given experiment. A typical use of these databases as gold standards in interactome mapping projects, however, assumes that PPIs included in the database are indeed interacting under the experimental conditions of the study.ResultsUsing raw data from 20 co-fractionation experiments and six published interactomes, we demonstrate that this assumption is often false, with up to 55% of purported gold standard interactions showing no evidence of interaction, on average. We identify a subset of CORUM database complexes that do show consistent evidence of interaction in co-fractionation studies, and we use this subset as gold standards to dramatically improve interactome mapping as judged by the number of predicted interactions at a given error rate.ConclusionsWe recommend using this CORUM subset as the gold standard set in future co-fractionation studies. More generally, we recommend using the subset of literature-curated PPIs that are specific to the experimental context whenever possible.
Project description:With the increased focus on intrinsically disordered proteins (IDPs) and their large interactomes, the question about their specificity - or more so on their multispecificity - arise. Here we recapitulate how specificity and multispecificity are quantified and address through examples if IDPs in this respect differ from globular proteins. The conclusion is that quantitatively, globular proteins and IDPs are similar when it comes to specificity. However, compared with globular proteins, IDPs have larger interactome sizes, a phenomenon that is further enabled by their flexibility, repetitive binding motifs and propensity to adapt to different binding partners. For IDPs, this adaptability, interactome size and a higher degree of multivalency opens for new interaction mechanisms such as facilitated exchange through trimer formation and ultra-sensitivity via threshold effects and ensemble redistribution. IDPs and their interactions, thus, do not compromise the definition of specificity. Instead, it is the sheer size of their interactomes that complicates its calculation. More importantly, it is this size that challenges how we conceptually envision, interpret and speak about their specificity.