Unknown

Dataset Information

0

Dynamic prediction of mortality in COVID-19 patients in the intensive care unit: A retrospective multi-center cohort study.


ABSTRACT:

Background

The COVID-19 pandemic continues to overwhelm intensive care units (ICUs) worldwide, and improved prediction of mortality among COVID-19 patients could assist decision making in the ICU setting. In this work, we report on the development and validation of a dynamic mortality model specifically for critically ill COVID-19 patients and discuss its potential utility in the ICU.

Methods

We collected electronic medical record (EMR) data from 3222 ICU admissions with a COVID-19 infection from 25 different ICUs in the Netherlands. We extracted daily observations of each patient and fitted both a linear (logistic regression) and non-linear (random forest) model to predict mortality within 24 h from the moment of prediction. Isotonic regression was used to re-calibrate the predictions of the fitted models. We evaluated the models in a leave-one-ICU-out (LOIO) cross-validation procedure.

Results

The logistic regression and random forest model yielded an area under the receiver operating characteristic curve of 0.87 [0.85; 0.88] and 0.86 [0.84; 0.88], respectively. The recalibrated model predictions showed a calibration intercept of -0.04 [-0.12; 0.04] and slope of 0.90 [0.85; 0.95] for logistic regression model and a calibration intercept of -0.19 [-0.27; -0.10] and slope of 0.89 [0.84; 0.94] for the random forest model.

Discussion

We presented a model for dynamic mortality prediction, specifically for critically ill COVID-19 patients, which predicts near-term mortality rather than in-ICU mortality. The potential clinical utility of dynamic mortality models such as benchmarking, improving resource allocation and informing family members, as well as the development of models with more causal structure, should be topics for future research.

SUBMITTER: Smit JM 

PROVIDER: S-EPMC9356569 | biostudies-literature | 2022

REPOSITORIES: biostudies-literature

altmetric image

Publications

Dynamic prediction of mortality in COVID-19 patients in the intensive care unit: A retrospective multi-center cohort study.

Smit J M JM   Krijthe J H JH   Endeman H H   Tintu A N AN   de Rijke Y B YB   Gommers D A M P J DAMPJ   Cremer O L OL   Bosman R J RJ   Rigter S S   Wils E-J EJ   Frenzel T T   Dongelmans D A DA   De Jong R R   Peters M A A MAA   Kamps M J A MJA   Ramnarain D D   Nowitzky R R   Nooteboom F G C A FGCA   De Ruijter W W   Urlings-Strop L C LC   Smit E G M EGM   Mehagnoul-Schipper D J DJ   Dormans T T   De Jager C P C CPC   Hendriks S H A SHA   Achterberg S S   Oostdijk E E   Reidinga A C AC   Festen-Spanjer B B   Brunnekreef G B GB   Cornet A D AD   Van den Tempel W W   Boelens A D AD   Koetsier P P   Lens J A JA   Faber H J HJ   Karakus A A   Entjes R R   De Jong P P   Rettig T C D TCD   Arbous M S MS   Lalisang R C A RCA   Tonutti M M   De Bruin D P DP   Elbers P W G PWG   Van Bommel J J   Reinders M J T MJT  

Intelligence-based medicine 20220806


<h4>Background</h4>The COVID-19 pandemic continues to overwhelm intensive care units (ICUs) worldwide, and improved prediction of mortality among COVID-19 patients could assist decision making in the ICU setting. In this work, we report on the development and validation of a dynamic mortality model specifically for critically ill COVID-19 patients and discuss its potential utility in the ICU.<h4>Methods</h4>We collected electronic medical record (EMR) data from 3222 ICU admissions with a COVID-1  ...[more]

Similar Datasets

| S-EPMC3580614 | biostudies-literature
| S-EPMC8016522 | biostudies-literature
| PRJNA561526 | ENA
| S-EPMC6148961 | biostudies-literature
| S-EPMC11656927 | biostudies-literature
2021-11-17 | GSE176498 | GEO
| S-EPMC9315914 | biostudies-literature
| S-EPMC4845982 | biostudies-literature
| S-EPMC8897522 | biostudies-literature
| S-EPMC8588975 | biostudies-literature