Unknown

Dataset Information

0

An Active Learning Framework Improves Tumor Variant Interpretation.


ABSTRACT:

Significance

A novel machine learning approach predicts the impact of tumor mutations on cellular phenotypes, overcomes limited training data, minimizes costly functional validation, and advances efforts to implement cancer precision medicine.

SUBMITTER: Blee AM 

PROVIDER: S-EPMC9357215 | biostudies-literature | 2022 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

An Active Learning Framework Improves Tumor Variant Interpretation.

Blee Alexandra M AM   Li Bian B   Pecen Turner T   Meiler Jens J   Nagel Zachary D ZD   Capra John A JA   Chazin Walter J WJ  

Cancer research 20220801 15


<h4>Significance</h4>A novel machine learning approach predicts the impact of tumor mutations on cellular phenotypes, overcomes limited training data, minimizes costly functional validation, and advances efforts to implement cancer precision medicine. ...[more]

Similar Datasets

| S-EPMC7334198 | biostudies-literature
| S-EPMC7790749 | biostudies-literature
| S-EPMC5995667 | biostudies-literature
| S-EPMC6677146 | biostudies-literature
| S-EPMC11696176 | biostudies-literature
| S-EPMC8782134 | biostudies-literature
| S-EPMC11216013 | biostudies-literature
| S-EPMC9421381 | biostudies-literature
| S-EPMC7079513 | biostudies-literature
| S-EPMC11349033 | biostudies-literature