Ontology highlight
ABSTRACT: Background:
Visceral leishmaniasis (VL) is a lethal parasitic disease, transmitted by sand fly vectors. Immunomodulatory properties of sand fly saliva proteins and their protective effects against Leishmania infection in pre-exposed animals suggest that a combination of an antigenic salivary protein along with a Leishmania antigen can be considered for designing a vaccine against leishmaniasis Methods:
Three different fusion forms of L. infantum hypothetical protein (LiHyV) in combination with Phlebotomus kandelakii salivary apyrase (PkanAp) were subjected to insilico analyses. Major Histocompatibility Complex (MHC) class I and II epitopes in both humans and BALB/c mice were predicted. Antigenicity, immunogenicity, epitope conservancy, toxicity, and population coverage were also evaluated. Results:
Highly antigenic promiscuous epitopes consisting of truncated LiHyV (10–285) and full-length PkanAp (21–329) were identified in human and was named Model 1. This model contained 25 MHC-I and 141 MHC-II antigenic peptides which among them, MPANSDIRI and AQSLFDFSGLALDSN were fully conserved. LALDSNATV, RCSSALVSI, ALVSINVPL, SAVESGALF of MHC-I epitopes, and 28 MHC-II binding epitopes showed 60% conservancy among various clades. A population coverage with a rate of >75% in the Iranian population and >70% in the whole world was also identified. Conclusion:
Based on this in-silico approach, the predicted Model 1 could potentially be used as a vaccine candidate against VL.
SUBMITTER: Fayaz S
PROVIDER: S-EPMC9363246 | biostudies-literature | 2022 Jan
REPOSITORIES: biostudies-literature