Unknown

Dataset Information

0

Machine learning approaches for diagnosing depression using EEG: A review.


ABSTRACT: Depression has become one of the most crucial public health issues, threatening the quality of life of over 300 million people throughout the world. Nevertheless, the clinical diagnosis of depression is now still hampered by behavioral diagnostic methods. Due to the lack of objective laboratory diagnostic criteria, accurate identification and diagnosis of depression remained elusive. With the rise of computational psychiatry, a growing number of studies have combined resting-state electroencephalography with machine learning (ML) to alleviate diagnosis of depression in recent years. Despite the exciting results, these were worrisome of these studies. As a result, ML prediction models should be continuously improved to better screen and diagnose depression. Finally, this technique would be used for the diagnosis of other psychiatric disorders in the future.

SUBMITTER: Liu Y 

PROVIDER: S-EPMC9375981 | biostudies-literature | 2022 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Machine learning approaches for diagnosing depression using EEG: A review.

Liu Yuan Y   Pu Changqin C   Xia Shan S   Deng Dingyu D   Wang Xing X   Li Mengqian M  

Translational neuroscience 20220101 1


Depression has become one of the most crucial public health issues, threatening the quality of life of over 300 million people throughout the world. Nevertheless, the clinical diagnosis of depression is now still hampered by behavioral diagnostic methods. Due to the lack of objective laboratory diagnostic criteria, accurate identification and diagnosis of depression remained elusive. With the rise of computational psychiatry, a growing number of studies have combined resting-state electroencepha  ...[more]

Similar Datasets

| S-EPMC6339954 | biostudies-literature
| S-EPMC11469383 | biostudies-literature
2023-01-16 | GSE183256 | GEO
| S-EPMC10656445 | biostudies-literature
| S-EPMC6785553 | biostudies-literature
| S-EPMC11250806 | biostudies-literature
| S-EPMC9271576 | biostudies-literature
2025-01-29 | GSE282504 | GEO
| S-EPMC8663682 | biostudies-literature
| S-EPMC11500324 | biostudies-literature