Unknown

Dataset Information

0

Improving dynamic stroke risk prediction in non-anticoagulated patients with and without atrial fibrillation: comparing common clinical risk scores and machine learning algorithms.


ABSTRACT:

Aims

Diversified cardiovascular/non-cardiovascular multi-morbid risk and efficient machine learning algorithms may facilitate improvements in stroke risk prediction, especially in newly diagnosed non-anticoagulated atrial fibrillation (AF) patients where initial decision-making on stroke prevention is needed. Therefore the aims of this article are to study common clinical risk assessment for stroke risk prediction in AF/non-AF cohorts together with cardiovascular/ non-cardiovascular multi-morbid conditions; to improve stroke risk prediction using machine learning approaches; and to compare the improved clinical prediction rules for multi-morbid conditions using machine learning algorithms.

Methods and results

We used cohort data from two health plans with 6 457 412 males/females contributing 14,188,679 person-years of data. The model inputs consisted of a diversified list of comorbidities/demographic/ temporal exposure variables, with the outcome capturing stroke event incidences. Machine learning algorithms used two parametric and two nonparametric techniques. The best prediction model was derived on the basis of non-linear formulations using machine learning criteria, with the highest c-index was obtained for logistic regression [0.892; 95% confidence interval (CI) 0.886-0.898] with consistency on external validation (0.891; 95% CI 0.882-0.9). These were significantly higher than those based on the conventional stroke risk scores (CHADS2: 0.7488, 95% CI 0.746-0.7516; CHA2DS2-VASc: 0.7801, 95% CI 0.7772-0.7831) and multi-morbid index (0.8508, 95% CI 0.8483-0.8532). The machine learning algorithm had good internal and external calibration and net benefit values.

Conclusion

In this large cohort of newly diagnosed non-anticoagulated AF/non-AF patients, large improvements in stroke risk prediction can be shown with cardiovascular/non-cardiovascular multi-morbid index and a machine learning approach accounting for dynamic changes in risk factors.

SUBMITTER: Lip GYH 

PROVIDER: S-EPMC9382661 | biostudies-literature | 2022 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Improving dynamic stroke risk prediction in non-anticoagulated patients with and without atrial fibrillation: comparing common clinical risk scores and machine learning algorithms.

Lip Gregory Y H GYH   Tran George G   Genaidy Ash A   Marroquin Patricia P   Estes Cara C   Landsheft Jeremy J  

European heart journal. Quality of care & clinical outcomes 20220801 5


<h4>Aims</h4>Diversified cardiovascular/non-cardiovascular multi-morbid risk and efficient machine learning algorithms may facilitate improvements in stroke risk prediction, especially in newly diagnosed non-anticoagulated atrial fibrillation (AF) patients where initial decision-making on stroke prevention is needed. Therefore the aims of this article are to study common clinical risk assessment for stroke risk prediction in AF/non-AF cohorts together with cardiovascular/ non-cardiovascular mult  ...[more]

Similar Datasets

| S-EPMC5752553 | biostudies-literature
| S-EPMC8348193 | biostudies-literature
| S-EPMC9849745 | biostudies-literature
| S-EPMC10866044 | biostudies-literature
| S-EPMC8209371 | biostudies-literature
| S-EPMC10826825 | biostudies-literature
| S-EPMC5679200 | biostudies-literature
| S-EPMC5367929 | biostudies-literature
| S-EPMC6222935 | biostudies-literature
| S-EPMC8756162 | biostudies-literature