Project description:The mechanochemical Knoevenagel condensation of malononitrile with p-nitrobenzaldehyde was studied in situ using a tandem approach. X-ray diffraction and Raman spectroscopy were combined to yield time-resolved information on the milling process. Under solvent-free conditions, the reaction leads to a quantitative conversion to p-nitrobenzylidenemalononitrile within 50 minutes. The in situ data indicate that the process is fast and proceeds under a direct conversion. After stopping the milling process, the reaction continues until complete conversion. The continuous and the stopped milling process both result in crystalline products suitable for single crystal X-ray diffraction.
Project description:In this work, we have developed a simple and very effective experimental strategy for the reaction of Knoevenagel via the condensation of aromatic aldehydes substituted with active methylene compounds in the presence of hybrid nanocomposites xMCl2-yNaPO3 (MCl2 = 2,2'-dibenzimidazolyl butane dichlorhydrates), under ecological conditions. The Phosphate-Benzimidazole hybrid nanocomposite as heterogeneous catalysts has demonstrated a high catalytic activity for the Knoevenagel condensation in ethanol as an ecological solvent. It has several advantages such as light reaction conditions, a simple and ecological working procedure. Meanwhile, xMCl2-yNaPO3 can be recovered by simple filtration and this catalytic system having an interesting lifetime (five cycles) with no decrease in activity.
Project description:The transformation of a base-catalyzed, mechano-assisted Knoevenagel condensation of mono-fluorinated benzaldehyde derivatives (p-, m-, o-benzaldehyde) with malonodinitrile was investigated in situ and in real time. Upon milling, the para-substituted product was found to crystallize initially into two different polymorphic forms, depending on the quantity of catalyst used. For low catalyst concentrations, a mechanically metastable phase (monoclinic) was initially formed, converting to the mechanically stable phase (triclinic) upon further grinding. Instead, higher catalyst concentrations crystallize directly as the triclinic product. Inclusion of catalyst in the final product, as evidenced by mass spectrometric analysis, suggests this complex polymorphic pathway may be due to seeding effects. Multivariate analysis for the in situ Raman spectra supports this complex formation pathway, and offers a new approach to monitoring multi-phase reactions during ball milling.
Project description:A chitosan nanofiber (CsNF)-catalyzed Knoevenagel reaction in green solvent, namely aqueous methanol, was investigated. CsNFs solely catalyzed the desired C-C bond formations in high yield with high selectivity, while conventional small-molecule amines, such as n-hexylamine and triethylamine, inevitably promoted transesterification to produce a large amount of solvolysis byproducts. Structural and chemical analyses of CsNFs suggested that the unique nanoarchitecture, in which chitosan molecules were bundled to ensure the high accessibility of substrates to catalytic sites, was critical to the highly efficient Knoevenagel condensation. The products were obtained in high purity without solvent-consuming purification, and the CsNF catalyst was easily removed and recycled. This study highlights a novel and promising function of CsNFs in green catalysis as emerging polysaccharide-based nanofibers.
Project description:In this study, a novel periodic mesoporous organosilica (PMO) containing diamide-diacid bridges was conveniently prepared using ethylenediaminetetraacetic dianhydride to support Cu(ii) species and affording supramolecular Cu@EDTAD-PMO nanoparticles efficiently. Fourier transform infrared (FT-IR) and energy dispersive X-ray (EDX) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller (BET) analysis, and high-resolution transmission electron microscopy (HRTEM) results confirmed the successful synthesis of Cu@EDTAD-PMO. The stabilized Cu(ii) nanoparticles inside the mesochannels of the new PMO provided appropriate sites for selective oxidation of different benzyl alcohol derivatives to their corresponding benzaldehydes and subsequent Knoevenagel condensation with malononitrile. Therefore, Cu@EDTAD-PMO can be considered as a multifunctional heterogeneous catalyst, which is prepared easily through a green procedure and demonstrates appropriate stability with almost no leaching of the Cu(ii) nanoparticles into the reaction medium, and easy recovery through simple filtration. The recycled Cu@EDTAD-PMO was reused up to five times without significant loss of its catalytic activity. The stability, recoverability, and reusability of the designed heterogeneous catalyst were also studied under various reaction conditions.
Project description:Agricultural water use accounts for around 70% of total water use in the world. Enhancing agricultural water use efficiency is a key way to cope with water shortage. Here, sunlight-responsive hydrogel beads consisting of sodium alginate (SA) matrix and detonation nanodiamond (DND) were fabricated by an ion gelation technique, which has potential applications in controlled water release. The interaction between the DND and SA matrix was investigated by Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD). UV-vis diffuse reflectance spectra verified DND can absorb solar energy in the UV, visible and even near-infrared regions. DND dispersed in the hydrogel matrix can absorb sunlight and generate heat, increasing the temperature of the matrix and resulting in slow release of water from the elastic beads. In addition, the effects of DND content and pH were systematically studied to evaluate their water adsorption properties. The swelling kinetics of DND@SA hydrogel beads in distilled water could be fitted well with a pseudo-second-order kinetic model. Six consecutive cycles of water release-reswelling indicated that their easy regeneration and reusability. The novel and eco-friendly hydrogel beads should be applicable to on-demand, sequential, and long-term release of water via light exposure.
Project description:In the present study, a novel catalytic route for the Knoevenagel condensation reaction has been developed by Pickering interfacial catalysis using magnesium oxide (MgO) as both an emulsion stabilizer and a base catalyst. MgO was prepared by the precipitation method using sodium hydroxide or ammonium hydroxide as the precipitating agent and calcined at different temperatures. The calcined samples were characterized by XRD, SEM, TEM, AFM, BET, and DLS techniques. The catalytic application of the emulsions stabilized by MgO was investigated for the Knoevenagel condensation reaction of benzaldehyde and its derivatives with malononitrile. All of the reactions were carried out at an ambient temperature (30 °C) under static conditions without stirring. Both the emulsion-stabilizing ability and the catalytic activity of MgO were found to be affected by the method of preparation, calcination temperature, and the nature of the oil phase. It was observed that the method of preparation varied the texture and morphology of MgO and thus the stability and droplet size of the emulsion formed. This was further reflected in the catalytic activity. The highest yield (87%) of the condensation product was obtained with MgO prepared by precipitation using a strong base (NaOH) and further calcined at 400 °C. The developed catalytic system offers several green chemistry advantages such as reusable solid-base catalyst and use of a single material as both emulsion stabilizer and catalyst. Room-temperature reaction under static conditions is an additional advantage of the developed catalytic system.
Project description:The rapid development of on-surface synthesis provides a unique approach toward the formation of carbon-based nanostructures with designed properties. Herein, we present the on-surface formation of CN-substituted phenylene vinylene chains on the Au(111) surface, thermally induced by annealing the substrate stepwise at temperatures between 220 °C and 240 °C. The reaction is investigated by scanning tunneling microscopy and density functional theory. Supported by the calculated reaction pathway, we assign the observed chain formation to a Knoevenagel condensation between an aldehyde and a methylene nitrile substituent.
Project description:Sequential Knoevenagel condensation/cyclization leading to indene and benzofulvene derivatives has been developed. The reaction of 2-(1-phenylvinyl)benzaldehyde with malonates gave benzylidene malonates, cyclized indenes, and dehydrogenated benzofulvenes. The product selectivity depends on the reaction conditions. The reaction with piperidine, AcOH in benzene at 80 °C for 1.5 h gave a benzylidene malonate in 75% yield as a major product. The reactions with piperidine, AcOH in benzene at 80 °C for 17 h and with TiCl4-pyridine at room temperature gave an indene derivative in 56 and 79% yields, respectively, as a major product. The reaction with TiCl4-Et3N gave a benzofulvene in 40% yield selectively. Indene was transformed to a benzofulvene derivative using the reagents TiCl4-Et3N and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). The reaction of variously substituted aryl derivatives with dimethyl malonate gave indene and benzofulvene derivatives. The reactions of 2-(1-phenylvinyl)benzaldehyde with Meldrum's acid or malononitrile also gave cyclized compounds in the suitable sequential or stepwise conditions. Furthermore, the reaction of 2-arylbenzaldehydes has been investigated. The limitation and scope have been described. The reaction mechanism of the cyclization steps has been examined by DFT calculations.
Project description:4H-Pyrans (4H-Pys) and 1,4-dihydropyridines (1,4-DHPs) are important classes of heterocyclic scaffolds in medicinal chemistry. Herein, an indium(III)-catalyzed one-pot domino reaction for the synthesis of highly functionalized 4H-Pys, and a model of 1,4-DHP is reported. This alternative approach to the challenging Hantzsch 4-component reaction enables the synthesis of fused-tricyclic heterocycles, and the mechanistic studies underline the importance of an intercepted-Knoevenagel adduct to achieve higher chemoselectivity towards these types of unsymmetrical heterocycles.