Project description:Optical microcavity configuration is one optical strategy to enhance light trapping in devices using planar electrodes. In this work, the potential application of optical microcavity configuration with ultrathin metal electrodes in highly efficient perovskite solar cells (PSCs) was investigated. By comparing with the device with conventional indium-tin-oxide (ITO) electrodes, it is shown that by carefully designing the Ag/dielectric planar electrode, a device with an optical microcavity structure can achieve comparable-or even higher-power conversion efficiency than a conventional device. Moreover, there is a relative high tolerance for the Ag film thickness in the optical microcavity structure. When the thickness of the Ag film is increased from 8 to 12 nm, the device still can attain the performance level of a conventional device. This gives a process tolerance to fabricate devices with an optical microcavity structure and reduces process difficulty. This work indicates the great application potential of optical microcavities with ultrathin metal electrodes in PSCs; more research attention should be paid in this field.
Project description:Semi-transparent perovskite solar cells (ST-PeSCs) have tremendous potential as solar windows owing to their higher efficiency and visible transmittance. However, studies toward this application are still nascent, particularly in unraveling the interplay between how the perovskite composition impacts the achievable device performance and stability. Here, the role of A- and X-site modification in APbX3 perovskites is studied to understand their influence on these factors. Through detailed experimental and simulation work, it is found that a perovskite composition consisting of cesium (Cs) and formamidinium (FA) at the A-site delivers the best device performance over a range of band gaps, which are tuned by changes to the X-site anion. Using this optimized perovskite composition, power conversion efficiencies of 15.5% and 4.1% are achieved for ST-PeSCs with average visible transmittance values between 20.7% and 52.4%, respectively. Furthermore, the CsFA-based ST-PeSCs show excellent long-term stability under continuous illumination and heating. The stability of the precursor solutions across each of the studied compositions has also been considered, showing dramatic differences in the structural properties of the perovskites and their device performance for all mixed A-site compositions possessing the archetypal methyl ammonium species, while also confirming the superior stability of the CsFA precursor solutions.
Project description:In this work we study in-depth the antireflection and filtering properties of ultrathin-metal-film-based transparent electrodes (MTEs) integrated in thin-film solar cells. Based on numerical optimization of the MTE design and the experimental characterization of thin-film perovskite solar cell (PSC) samples, we show that reflection in the visible spectrum can be strongly suppressed, in contrast to common belief (due to the compact metal layer). The optical loss of the optimized electrode (~ 2.9%), composed of a low-resistivity metal and an insulator, is significantly lower than that of a conventional transparent conductive oxide (TCO ~ 6.3%), thanks to the very high transmission of visible light within the cell (> 91%) and low thickness (< 70 nm), whereas the reflection of infrared light (~ 70%) improves by > 370%. To assess the application potentials, integrated current density > 25 mA/cm2, power conversion efficiency > 20%, combined with vastly reduced device heat load by 177.1 W/m2 was achieved in state-of-the-art PSCs. Our study aims to set the basis for a novel interpretation of composite electrodes/structures, such as TCO-metal-TCO, dielectric-metal-dielectric or insulator-metal-insulator, and hyperbolic metamaterials, in high-efficiency optoelectronic devices, such as solar cells, semi-transparent, and concentrated systems, and other electro-optical components including smart windows, light-emitting diodes, and displays.
Project description:Rainbow light trapping in plasmonic devices allows for field enhancement of multiple wavelengths within a single device. However, many of these devices lack precise control over spatial and spectral enhancement profiles and cannot provide extremely high localised field strengths. Here we present a versatile, analytical design paradigm for rainbow trapping in nanogroove arrays by utilising both the groove-width and groove-length as tuning parameters. We couple this design technique with fabrication through multilayer thin-film deposition and focused ion beam milling, which enables the realisation of unprecedented feature sizes down to 5 nm and corresponding extreme normalised local field enhancements up to 103. We demonstrate rainbow trapping within the devices through hyperspectral microscopy and show agreement between the experimental results and simulation. The combination of expeditious design and precise fabrication underpins the implementation of these nanogroove arrays for manifold applications in sensing and nanoscale optics.
Project description:We propose a metallic-particle-based two-dimensional quasi-grating structure for application to an organic solar cell. With the use of oblate spheroidal nanoparticles in contact with an anode of inverted, ultrathin organic solar cells (OSCs), the quasi-grating structure offers strong hybridization between localized surface plasmons and plasmonic gap modes leading to broadband (300~800 nm) and uniform (average ~90%) optical absorption spectra. Both strong optical enhancement in extreme confinement within the active layer (90 nm) and improved hole collection are thus realized. A coupled optical-electrical multi-physics optimization shows a large (~33%) enhancement in the optical absorption (corresponding to an absorption efficiency of ~47%, AM1.5G weighted, visible) when compared to a control OSC without the quasi-grating structure. That translates into a significant electrical performance gain of ~22% in short circuit current and ~15% in the power conversion efficiency (PCE), leading to an energy conversion efficiency (~6%) which is comparable to that of optically-thick inverted OSCs (3-7%). Detailed analysis on the influences of mode hybridization to optical field distributions, exciton generation rate, charge carrier collection efficiency and electrical conversion efficiency is provided, to offer an integrated understanding on the coupled optical-electrical optimization of ultrathin OSCs.
Project description:Quasi-two-dimensional (2D) Pb-Sn mixed perovskites show great potential in applications of single and tandem photovoltaic devices, but they suffer from low efficiencies due to the existence of horizontal 2D phases. Here, we obtain a record high efficiency of 18.06% based on 2D ⟨n⟩ = 5 Pb-Sn mixed perovskites (iso-BA2MA4(PbxSn1-x)5I16, x = 0.7), by optimizing the crystal orientation through a regulation of the Pb/Sn ratio. We find that Sn-rich precursors give rise to a mixture of horizontal and vertical 2D phases. Interestingly, increasing the Pb content can not only entirely suppress the unwanted horizontal 2D phase in the film but also enhance the growth of vertical 2D phases, thus significantly improving the device performance and stability. It is suggested that an increase of the Pb content in the Pb-Sn mixed systems facilitates the incorporation of iso-butylammonium (iso-BA+) ligands in vertically oriented perovskites because of the reduced lattice strain and increased interaction between the organic ligands and inorganic framework. Our work sheds light on the optimal conditions for fabricating stable and efficient 2D Pb-Sn mixed perovskite solar cells.
Project description:A light-trapping transparent electrode design based on sub-surface binary dielectric gratings is introduced and demonstrated experimentally. The structure consists of metallic wires patterned with an array of silicon nanobeams. Optimization of the grating geometry achieves selective suppression of zero-order diffraction, while enabling redirection of incident light to an angle that exceeds critical angle of the local environment. Subsequent total-internal reflection allows recovery of light initially incident on the patterned metal wire. Experiments involving amorphous silicon gratings patterned on gold wires demonstrate a light-trapping efficiency exceeding 41 %. Modeling of crystalline silicon nanobeams on silver wires suggests that a shadowing loss reduction of 82 % is feasible. The achievement of a large shadowing reduction using a coplanar structure with high manufacturing tolerance and a polarization-insensitive optical response makes this design a promising candidate for integration in a wide range of real-world photonic devices.
Project description:Typical in vitro barrier and co-culture models rely upon thick semi-permeable polymeric membranes that physically separate two compartments. Polymeric track-etched membranes, while permeable to small molecules, are far from physiological with respect to physical interactions with co-cultured cells and are not compatible with high-resolution imaging due to light scattering and autofluorescence. Here we report on an optically transparent ultrathin membrane with porosity exceeding 20%. We optimize deposition and annealing conditions to create a tensile and robust porous silicon dioxide membrane that is comparable in thickness to the vascular basement membrane (100-300 nm). We demonstrate that human umbilical vein endothelial cells (HUVECs) spread and proliferate on these membranes similarly to control substrates. Additionally, HUVECs are able to transfer cytoplasmic cargo to adipose-derived stem cells when they are co-cultured on opposite sides of the membrane, demonstrating its thickness supports physiologically relevant cellular interactions. Lastly, we confirm that these porous glass membranes are compatible with lift-off processes yielding membrane sheets with an active area of many square centimeters. We believe that these membranes will enable new in vitro barrier and co-culture models while offering dramatically improved visualization compared to conventional alternatives.
Project description:Flexible transparent electrodes are in significant demand in applications including solar cells, light-emitting diodes, and touch panels. The combination of high optical transparency and high electrical conductivity, however, sets a stringent requirement on electrodes based on metallic materials. To obtain practical sheet resistances, the visible transmittance of the electrodes in previous studies is typically lower than the transparent substrates the electrode structures are built on, namely, the transmittance relative to the substrate is <100%. Here, we demonstrate a flexible dielectric-metal-dielectric-based electrode with ~88.4% absolute transmittance, even higher than the ~88.1% transmittance of the polymer substrate, which results in a relative transmittance of ~100.3%. This non-trivial performance is achieved by leveraging an optimized dielectric-metal-dielectric structure guided by analytical and quantitative principles described in this work, and is attributed to an ultra-thin and ultra-smooth copper-doped silver film with low optical loss and low sheet resistance.
Project description:Ultrathin film-based transparent conductive oxides (TCOs) with a broad work function (WF) tunability are highly demanded for efficient energy conversion devices. However, reducing the film thickness below 50 nm is limited due to rapidly increasing resistance; furthermore, introducing dopants into TCOs such as indium tin oxide (ITO) to reduce the resistance decreases the transparency due to a trade-off between the two quantities. Herein, we demonstrate dopant-tunable ultrathin (≤ 50 nm) TCOs fabricated via electric field-driven metal implantation (m-TCOs; m = Ni, Ag, and Cu) without compromising their innate electrical and optical properties. The m-TCOs exhibit a broad WF variation (0.97 eV), high transmittance in the UV to visible range (89-93% at 365 nm), and low sheet resistance (30-60 Ω cm-2). Experimental and theoretical analyses show that interstitial metal atoms mainly affect the change in the WF without substantial losses in optical transparency. The m-ITOs are employed as anode or cathode electrodes for organic light-emitting diodes (LEDs), inorganic UV LEDs, and organic photovoltaics for their universal use, leading to outstanding performances, even without hole injection layer for OLED through the WF-tailored Ni-ITO. These results verify the proposed m-TCOs enable effective carrier transport and light extraction beyond the limits of traditional TCOs.