Regulation and adaptation of glucose metabolism of the parasitic protist Leishmania donovani at the enzyme and mRNA levels.
Ontology highlight
ABSTRACT: Adaptation of the glucose metabolism of Leishmania donovani promastigotes (insect stage) was investigated by simultaneously measuring metabolic rates, enzyme activities, message levels, and cellular parameters under various conditions. Chemostats were used to adapt cells to different growth rates with growth rate-limiting or excess glucose concentrations. L. donovani catabolized glucose to CO(2), succinate, acetate, and pyruvate in ratios that depended on growth rate and glucose availability. Rates of glucose consumption were a linear function of growth rate and were twice as high in excess glucose-grown cells as in glucose-limited organisms. The major end product was CO(2), but organic end products were also formed in ratios that varied strongly with growth conditions. The specific activities of the 14 metabolic enzymes measured varied by factors of 3 to 17. Two groups of enzymes adapted specific activities in parallel, but there was no correlation between the groups. The activities of only one group correlated with specific rates of glucose metabolism. Total RNA content per cellular protein varied by a factor of 6 and showed a linear relationship with the rate of glucose consumption. There was no correlation between steady-state message levels and activities of the corresponding enzymes, suggesting regulation at the posttranscriptional level. A comparison of the adaptation of energy metabolism in L. donovani and other species suggests that the energy metabolism of L. donovani is inefficient but is well suited to the environmental challenges that it encounters during residence in the sandfly, its insect vector.
SUBMITTER: ter Kuile BH
PROVIDER: S-EPMC93973 | biostudies-literature | 1999 Aug
REPOSITORIES: biostudies-literature
ACCESS DATA