Ontology highlight
ABSTRACT: Background
Advances in climate change research contribute to improved forecasts of hydrological extremes with potentially severe impacts on human societies and natural landscapes. Rainfall erosivity density (RED), i.e. rainfall erosivity (MJ mm hm-2 h-1 yr-1) per rainfall unit (mm), is a measure of rainstorm aggressiveness and a proxy indicator of damaging hydrological events.Methods and findings
Here, using downscaled RED data from 3,625 raingauges worldwide and log-normal ordinary kriging with probability mapping, we identify damaging hydrological hazard-prone areas that exceed warning and alert thresholds (1.5 and 3.0 MJ hm-2 h-1, respectively). Applying exceedance probabilities in a geographical information system shows that, under current climate conditions, hazard-prone areas exceeding a 50% probability cover ~31% and ~19% of the world's land at warning and alert states, respectively.Conclusion
RED is identified as a key driver behind the spatial growth of environmental disruption worldwide (with tropical Latin America, South Africa, India and the Indian Archipelago most affected).
SUBMITTER: Diodato N
PROVIDER: S-EPMC9401149 | biostudies-literature | 2022
REPOSITORIES: biostudies-literature
Diodato Nazzareno N Borrelli Pasquale P Panagos Panos P Bellocchi Gianni G
PloS one 20220824 8
<h4>Background</h4>Advances in climate change research contribute to improved forecasts of hydrological extremes with potentially severe impacts on human societies and natural landscapes. Rainfall erosivity density (RED), i.e. rainfall erosivity (MJ mm hm-2 h-1 yr-1) per rainfall unit (mm), is a measure of rainstorm aggressiveness and a proxy indicator of damaging hydrological events.<h4>Methods and findings</h4>Here, using downscaled RED data from 3,625 raingauges worldwide and log-normal ordin ...[more]