Unknown

Dataset Information

0

Lysine acetylation of Escherichia coli lactate dehydrogenase regulates enzyme activity and lactate synthesis.


ABSTRACT: As an evolutionarily conserved posttranslational modification, protein lysine acetylation plays important roles in many physiological and metabolic processes. However, there are few reports about the applications of lysine acetylation in metabolic regulations. Lactate is a main byproduct in microbial fermentation, and itself also an important bulk chemical with considerable commercial values in many fields. Lactate dehydrogenase (LdhA) is the key enzyme catalyzing lactate synthesis from pyruvate. Here, we reported that Escherichia coli LdhA can be acetylated and the acetylated lysine sites were identified by mass spectrometry. The effects and regulatory mechanisms of acetylated sites on LdhA activity were characterized. Finally, lysine acetylation was successfully used to regulate the lactate synthesis. LdhA (K9R) mutant overexpressed strain improved the lactate titer and glucose conversion efficiency by 1.74 folds than that of wild-type LdhA overexpressed strain. LdhA (K154Q-K248Q) mutant can inhibit lactate accumulation and improve 3HP production. Our study established a paradigm for lysine acetylation in lactate synthesis regulation and suggested that lysine acetylation may be a promising strategy to improve the target production and conversion efficiency in microbial synthesis. The application of lysine acetylation in regulating lactate synthesis also provides a reference for the treatment of lactate-related diseases.

SUBMITTER: Liu M 

PROVIDER: S-EPMC9424733 | biostudies-literature | 2022

REPOSITORIES: biostudies-literature

altmetric image

Publications

Lysine acetylation of <i>Escherichia coli</i> lactate dehydrogenase regulates enzyme activity and lactate synthesis.

Liu Min M   Huo Meitong M   Liu Changshui C   Guo Likun L   Ding Yamei Y   Ma Qingjun Q   Qi Qingsheng Q   Xian Mo M   Zhao Guang G  

Frontiers in bioengineering and biotechnology 20220816


As an evolutionarily conserved posttranslational modification, protein lysine acetylation plays important roles in many physiological and metabolic processes. However, there are few reports about the applications of lysine acetylation in metabolic regulations. Lactate is a main byproduct in microbial fermentation, and itself also an important bulk chemical with considerable commercial values in many fields. Lactate dehydrogenase (LdhA) is the key enzyme catalyzing lactate synthesis from pyruvate  ...[more]

Similar Datasets

| S-EPMC5988991 | biostudies-literature
| S-EPMC6209979 | biostudies-literature
| S-EPMC3885615 | biostudies-literature
| S-EPMC5481575 | biostudies-literature
| S-EPMC9239087 | biostudies-literature
| S-EPMC7667978 | biostudies-literature
| S-EPMC9765299 | biostudies-literature
2014-10-07 | GSE62094 | GEO
| S-EPMC6009893 | biostudies-literature
2014-10-07 | E-GEOD-62094 | biostudies-arrayexpress