Unknown

Dataset Information

0

Strain-level profiling with picodroplet microfluidic cultivation reveals host-specific adaption of honeybee gut symbionts.


ABSTRACT:

Background

Symbiotic gut microbes have a rich genomic and metabolic pool and are closely related to hosts' health. Traditional sequencing profiling masks the genomic and phenotypic diversity among strains from the same species. Innovative droplet-based microfluidic cultivation may help to elucidate the inter-strain interactions. A limited number of bacterial phylotypes colonize the honeybee gut, while individual strains possess unique genomic potential and critical capabilities, which provides a particularly good model for strain-level analyses.

Results

Here, we construct a droplet-based microfluidic platform and generated ~ 6 × 108 droplets encapsulated with individual bacterial cells from the honeybee gut and cultivate in different media. Shotgun metagenomic analysis reveals significant changes in community structure after droplet-based cultivation, with certain species showing higher strain-level diversity than in gut samples. We obtain metagenome-assembled genomes, and comparative analysis reveal a potential novel cluster from Bifidobacterium in the honeybee. Interestingly, Lactobacillus panisapium strains obtained via droplet cultivation from Apis mellifera contain a unique set of genes encoding L-arabinofuranosidase, which is likely important for the survival of bacteria in competitive environments.

Conclusions

By encapsulating single bacteria cells inside microfluidic droplets, we exclude potential interspecific competition for the enrichment of rare strains by shotgun sequencing at high resolution. The comparative genomic analysis reveals underlying mechanisms for host-specific adaptations, providing intriguing insights into microbe-microbe interactions. The current approach may facilitate the hunting for elusive bacteria and paves the way for large-scale studies of more complex animal microbial communities. Video Abstract.

SUBMITTER: Meng Y 

PROVIDER: S-EPMC9429759 | biostudies-literature | 2022 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Strain-level profiling with picodroplet microfluidic cultivation reveals host-specific adaption of honeybee gut symbionts.

Meng Yujie Y   Li Shuang S   Zhang Chong C   Zheng Hao H  

Microbiome 20220831 1


<h4>Background</h4>Symbiotic gut microbes have a rich genomic and metabolic pool and are closely related to hosts' health. Traditional sequencing profiling masks the genomic and phenotypic diversity among strains from the same species. Innovative droplet-based microfluidic cultivation may help to elucidate the inter-strain interactions. A limited number of bacterial phylotypes colonize the honeybee gut, while individual strains possess unique genomic potential and critical capabilities, which pr  ...[more]

Similar Datasets

| S-EPMC3829894 | biostudies-other
| S-EPMC9235140 | biostudies-literature
| S-EPMC4432818 | biostudies-literature
| S-EPMC4103313 | biostudies-literature
| S-EPMC8388557 | biostudies-literature
| S-EPMC4807504 | biostudies-literature
| S-EPMC4507803 | biostudies-literature
| S-EPMC9622858 | biostudies-literature
| S-EPMC1691126 | biostudies-other
2013-05-01 | E-GEOD-43507 | biostudies-arrayexpress