Unknown

Dataset Information

0

A gene cluster in Ginkgo biloba encodes unique multifunctional cytochrome P450s that initiate ginkgolide biosynthesis.


ABSTRACT: The ginkgo tree (Ginkgo biloba) is considered a living fossil due to its 200 million year's history under morphological stasis. Its resilience is partly attributed to its unique set of specialized metabolites, in particular, ginkgolides and bilobalide, which are chemically complex terpene trilactones. Here, we use a gene cluster-guided mining approach in combination with co-expression analysis to reveal the primary steps in ginkgolide biosynthesis. We show that five multifunctional cytochrome P450s with atypical catalytic activities generate the tert-butyl group and one of the lactone rings, characteristic of all G. biloba trilactone terpenoids. The reactions include scarless C-C bond cleavage as well as carbon skeleton rearrangement (NIH shift) occurring on a previously unsuspected intermediate. The cytochrome P450s belong to CYP families that diversifies in pre-seed plants and gymnosperms, but are not preserved in angiosperms. Our work uncovers the early ginkgolide pathway and offers a glance into the biosynthesis of terpenoids of the Mesozoic Era.

SUBMITTER: Forman V 

PROVIDER: S-EPMC9436924 | biostudies-literature | 2022 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

A gene cluster in Ginkgo biloba encodes unique multifunctional cytochrome P450s that initiate ginkgolide biosynthesis.

Forman Victor V   Luo Dan D   Geu-Flores Fernando F   Lemcke René R   Nelson David R DR   Kampranis Sotirios C SC   Staerk Dan D   Møller Birger Lindberg BL   Pateraki Irini I  

Nature communications 20220901 1


The ginkgo tree (Ginkgo biloba) is considered a living fossil due to its 200 million year's history under morphological stasis. Its resilience is partly attributed to its unique set of specialized metabolites, in particular, ginkgolides and bilobalide, which are chemically complex terpene trilactones. Here, we use a gene cluster-guided mining approach in combination with co-expression analysis to reveal the primary steps in ginkgolide biosynthesis. We show that five multifunctional cytochrome P4  ...[more]

Similar Datasets

| S-EPMC9966486 | biostudies-literature
| S-EPMC6932810 | biostudies-literature
| S-EPMC7524859 | biostudies-literature
| S-EPMC6037272 | biostudies-literature
| S-EPMC8920304 | biostudies-literature
| S-EPMC4593864 | biostudies-literature
| PRJNA271136 | ENA
| PRJNA307658 | ENA
| PRJNA515544 | ENA
| PRJNA270901 | ENA