Unknown

Dataset Information

0

A meiotic driver alters sperm form and function in house mice: a possible example of spite.


ABSTRACT: The ability to subvert independent assortment of chromosomes is found in many meiotic drivers, such as the t haplotype in house mice Mus musculus, in which the t-bearing chromosomal homolog is preferentially transmitted to offspring. This is explained by a poison-antidote system, in which developing + and t sperm in testes of + /t males are exposed to 'poison' coded by t loci, from which t sperm are protected, allowing t sperm an overwhelming fertilisation advantage in monogamous matings. This system is thought to result in poorly and normally motile sperm subpopulations within + /t sperm, leaving t sperm unharmed. Conversely, we found that the fastest quartile of sperm from + /t males swam more slowly, both forwards and along their travel path, and had reduced straightness and linearity, compared to the fastest quartile of + / + sperm. Moreover, sperm from + /t males had shorter tails and narrower heads than + / + sperm, and these morphological differences covaried with motility differences. Finally, + /t traits did not show evidence of bimodal distributions. We conclude that the t haplotype drive results in lasting damage to the motility of both + and t developing sperm, although previous studies indicate that + must be more harmed than t sperm. This damage to all sperm may explain the low success of + /t males in sperm competition with + / + males, seen in earlier studies. We propose that the harm the t causes to itself could be termed 'spiteful', which may also be common to other gamete-harming meiotic drive systems.

SUBMITTER: Winkler L 

PROVIDER: S-EPMC9508062 | biostudies-literature | 2022 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

A meiotic driver alters sperm form and function in house mice: a possible example of spite.

Winkler Lennart L   Lindholm Anna K AK  

Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology 20220601 2-3


The ability to subvert independent assortment of chromosomes is found in many meiotic drivers, such as the t haplotype in house mice Mus musculus, in which the t-bearing chromosomal homolog is preferentially transmitted to offspring. This is explained by a poison-antidote system, in which developing + and t sperm in testes of + /t males are exposed to 'poison' coded by t loci, from which t sperm are protected, allowing t sperm an overwhelming fertilisation advantage in monogamous matings. This s  ...[more]

Similar Datasets

| S-EPMC2632676 | biostudies-literature
| S-EPMC6892043 | biostudies-literature
2019-10-28 | GSE138839 | GEO
| S-EPMC4242561 | biostudies-literature
| S-EPMC10253330 | biostudies-literature
| S-EPMC3630328 | biostudies-literature
| S-EPMC7148378 | biostudies-literature
| S-EPMC6281322 | biostudies-literature
| S-EPMC5419488 | biostudies-literature
| S-EPMC9311743 | biostudies-literature