Project description:Vitamin A deficiency has been shown to exacerbate allergic asthma. Previous studies have postulated that retinoic acid (RA), an active metabolite of vitamin A and high-affinity ligand for RA receptor (RAR), is reduced in airway inflammatory condition and contributes to multiple features of asthma including airway hyperresponsiveness and excessive accumulation of airway smooth muscle (ASM) cells. In this study, we directly quantified RA and examined the molecular basis for reduced RA levels and RA-mediated signaling in lungs and ASM cells obtained from asthmatic donors and in lungs from allergen-challenged mice. Levels of RA and retinol were significantly lower in lung tissues from asthmatic donors and house dust mite (HDM)-challenged mice compared to non-asthmatic human lungs and PBS-challenged mice, respectively. Quantification of mRNA and protein expression revealed dysregulation in the first step of RA biosynthesis consistent with reduced RA including decreased protein expression of retinol dehydrogenase (RDH)-10 and increased protein expression of RDH11 and dehydrogenase/reductase (DHRS)-4 in asthmatic lung. Proteomic profiling of non-asthmatic and asthmatic lungs also showed significant changes in the protein expression of AP-1 targets consistent with increased AP-1 activity. Further, basal RA levels and RA biosynthetic capabilities were decreased in asthmatic human ASM cells. Treatment of human ASM cells with all-trans RA (ATRA) or the RARγ-specific agonist (CD1530) resulted in the inhibition of mitogen-induced cell proliferation and AP-1-dependent transcription. These data suggest that RA metabolism is decreased in asthmatic lung and that enhancing RAR signaling using ATRA or RARγ agonists may mitigate airway remodeling associated with asthma.
Project description:Neovascularization, increased basal membrane thickness and increased airway smooth muscle (ASM) bulk are hallmarks of airway remodelling in asthma. In this study, we examined connective tissue growth factor (CTGF) dysregulation in human lung tissue and animal models of allergic airway disease. Immunohistochemistry revealed that ASM cells from patients with severe asthma (A) exhibited high expression of CTGF, compared to mild and non-asthmatic (NA) tissues. This finding was replicated in a sheep model of allergic airways disease. In vitro, transforming growth factor (TGF)-β increased CTGF expression both in NA- and A-ASM cells but the expression was higher in A-ASM at both the mRNA and protein level as assessed by PCR and Western blot. Transfection of CTGF promoter-luciferase reporter constructs into NA- and A-ASM cells indicated that no region of the CTGF promoter (-1500 to +200 bp) displayed enhanced activity in the presence of TGF-β. However, in silico analysis of the CTGF promoter suggested that distant transcription factor binding sites may influence CTGF promoter activation by TGF-β in ASM cells. The discord between promoter activity and mRNA expression was also explained, in part, by differential post-transcriptional regulation in A-ASM cells due to enhanced mRNA stability for CTGF. In patients, higher CTGF gene expression in bronchial biopsies was correlated with increased basement membrane thickness indicating that the enhanced CTGF expression in A-ASM may contribute to airway remodelling in asthma.
Project description:Airway smooth muscle (ASM) growth contributes to the mechanism of airway hyperresponsiveness in asthma. Here we demonstrate that CD4+ T cells, central to chronic airway inflammation, drive ASM remodeling in experimental asthma. Adoptive transfer of CD4+ T cells from sensitized rats induced an increase in proliferation and inhibition of apoptosis of airway myocytes in naive recipients upon repeated antigen challenge, which resulted in an increase in ASM mass. Genetically modified CD4+ T cells expressing enhanced GFP (EGFP) were localized by confocal microscopy in juxtaposition to ASM cells, which suggests that CD4+ T cells may modulate ASM cell function through direct cell-cell interaction in vivo. Coculture of antigen-stimulated CD4+ T cells with cell cycle-arrested ASM cells induced myocyte proliferation, dependent on T cell activation and direct T cell-myocyte contact. Reciprocally, direct cell contact prevented postactivation T cell apoptosis, which suggests receptor-mediated T cell-myocyte crosstalk. Overall, our data demonstrate that activated CD4+ T cells drive ASM remodeling in experimental asthma and suggest that a direct cell-cell interaction participates in CD4+ T cell regulation of myocyte turnover and induction of remodeling.
Project description:Airway smooth muscle (ASM) plays an integral part in the pathophysiology of asthma. It is responsible for acute bronchoconstriction, which is potentiated by constrictor hyperresponsiveness, impaired relaxation and length adaptation. ASM also contributes to airway remodeling and inflammation in asthma. In light of this, ASM is an important target in the treatment of asthma.
Project description:Airway obstruction is a hallmark of allergic asthma and is caused primarily by airway smooth muscle (ASM) hypercontractility. Airway inflammation leads to the release of cytokines that enhance ASM contraction by increasing ras homolog gene family, member A (RhoA) activity. The protective mechanisms that prevent or attenuate the increase in RhoA activity have not been well studied. Here, we report that mice lacking the gene that encodes the protein Milk Fat Globule-EGF factor 8 (Mfge8(-/-)) develop exaggerated airway hyperresponsiveness in experimental models of asthma. Mfge8(-/-) ASM had enhanced contraction after treatment with IL-13, IL-17A, or TNF-?. Recombinant Mfge8 reduced contraction in murine and human ASM treated with IL-13. Mfge8 inhibited IL-13-induced NF-?B activation and induction of RhoA. Mfge8 also inhibited rapid activation of RhoA, an effect that was eliminated by an inactivating point mutation in the RGD integrin-binding site in recombinant Mfge8. Human subjects with asthma had decreased Mfge8 expression in airway biopsies compared with healthy controls. These data indicate that Mfge8 binding to integrin receptors on ASM opposes the effect of allergic inflammation on RhoA activity and identify a pathway for specific inhibition of ASM hypercontractility in asthma.
Project description:Asthma is characterized by disordered airway physiology as a consequence of increased airway smooth muscle contractility. The underlying cause of this hypercontractility is poorly understood.We sought to investigate whether the burden of oxidative stress in airway smooth muscle in asthma is heightened and mediated by an intrinsic abnormality promoting hypercontractility.We examined the oxidative stress burden of airway smooth muscle in bronchial biopsies and primary cells from subjects with asthma and healthy controls. We determined the expression of targets implicated in the control of oxidative stress in airway smooth muscle and their role in contractility.We found that the oxidative stress burden in the airway smooth muscle in individuals with asthma is heightened and related to the degree of airflow obstruction and airway hyperresponsiveness. This was independent of the asthmatic environment as in vitro primary airway smooth muscle from individuals with asthma compared with healthy controls demonstrated increased oxidative stress-induced DNA damage together with an increased production of reactive oxygen species. Genome-wide microarray of primary airway smooth muscle identified increased messenger RNA expression in asthma of NADPH oxidase (NOX) subtype 4. This NOX4 overexpression in asthma was supported by quantitative polymerase chain reaction, confirmed at the protein level. Airway smooth muscle from individuals with asthma exhibited increased agonist-induced contraction. This was abrogated by NOX4 small interfering RNA knockdown and the pharmacological inhibitors diphenyleneiodonium and apocynin.Our findings support a critical role for NOX4 overexpression in asthma in the promotion of oxidative stress and consequent airway smooth muscle hypercontractility. This implicates NOX4 as a potential novel target for asthma therapy.
Project description:BackgroundA challenge in the post-GWAS era is to assign function to disease-associated variants. However, available resources do not include all tissues or environmental exposures that are relevant to all diseases. For example, exaggerated bronchoconstriction of airway smooth muscle cells (ASMCs) defines airway hyperresponsiveness (AHR), a cardinal feature of asthma. However, the contribution of ASMC to genetic and genomic studies has largely been overlooked. Our study aimed to address the gap in data availability from a critical tissue in genomic studies of asthma.MethodsWe developed a cell model of AHR to discover variants associated with transcriptional, epigenetic, and cellular responses to two AHR promoting cytokines, IL-13 and IL-17A, and performed a GWAS of bronchial responsiveness (BRI) in humans.ResultsOur study revealed significant response differences between ASMCs from asthma cases and controls, including genes implicated in asthma susceptibility. We defined molecular quantitative trait loci (QTLs) for expression (eQTLs) and methylation (meQTLs), and cellular QTLs for contractility (coQTLs) and performed a GWAS of BRI in human subjects. Variants in asthma GWAS were significantly enriched for ASM QTLs and BRI-associated SNPs, and near genes enriched for ASM function, many with small P values that did not reach stringent thresholds of significance in GWAS.ConclusionsOur study identified significant differences between ASMCs from asthma cases and controls, potentially reflecting trained tolerance in these cells, as well as a set of variants, overlooked in previous GWAS, which reflect the AHR component of asthma.
Project description:In severe asthma, bronchodilator- and steroid-insensitive airflow obstruction develops through unknown mechanisms characterized by increased lung airway smooth muscle (ASM) mass and stiffness. We explored the role of a Regulator of G-protein Signaling protein (RGS4) in the ASM hyperplasia and reduced contractile capacity characteristic of advanced asthma. Using immunocytochemical staining, ASM expression of RGS4 was determined in endobronchial biopsies from healthy subjects and those from subjects with mild, moderate and severe asthma. Cell proliferation assays, agonist-induced calcium mobilization and bronchoconstriction were determined in cultured human ASM cells and in human precision cut lung slices. Using gain- and loss-of-function approaches, the precise role of RGS proteins was determined in stimulating human ASM proliferation and inhibiting bronchoconstriction. RGS4 expression was restricted to a subpopulation of ASM and was specifically upregulated by mitogens, which induced a hyperproliferative and hypocontractile ASM phenotype similar to that observed in recalcitrant asthma. RGS4 expression was markedly increased in bronchial smooth muscle of patients with severe asthma, and expression correlated significantly with reduced pulmonary function. Whereas RGS4 inhibited G protein-coupled receptor (GPCR)-mediated bronchoconstriction, unexpectedly RGS4 was required for PDGF-induced proliferation and sustained activation of PI3K, a mitogenic signaling molecule that regulates ASM proliferation. These studies indicate that increased RGS4 expression promotes a phenotypic switch of ASM, evoking irreversible airway obstruction in subjects with severe asthma.
Project description:BackgroundThe proliferation of airway smooth muscle cells (ASMCs) is a key feature of airway remodeling in asthma. Azithromycin (AZM) has been shown to decrease bronchial hyperresponsiveness and airway inflammation in asthmatics; however, the role of AZM in ASMC proliferation remains unclear. Thus, we investigated the effect of AZM on ASMC proliferation in a rat model of experimental asthma.MethodsWe isolated ASMCs from rats sensitized and challenged by ovabulmin (OVA), and then treated with different concentrations of AZM. Cytotoxicity of ASMC was evaluated by Cell Counting Kit-8 (CCK-8) assay, morphological change was examined with laser confocal microscope after Annexin V/propidium iodide (PI) double staining, mitochondrial membrane potential was determined with JC-1 staining, and the expression of cytochrome C was examined by western blot.ResultsThe relative surface areas of airway wall and smooth muscle layers in OVA-sensitized rats were significantly increased compared to those in the control group. Furthermore, in OVA-sensitized rats, the mitochondrial membrane potential of ASMC was higher, while the expression of mitochondria cytochrome C was lower compared to that in control rats. After AZM treatment, ASMC apoptosis was increased, mitochondrial membrane potential reduced, and the protein level of cytosolic cytochrome C was increased.ConclusionsThis study demonstrated that AZM increased the apoptosis of ASMCs through a mitochondrial pathway, which might play an important role in ASMs proliferation during asthmatic remodeling.