Identification and characterization of a developmentally regulated protein, EshA, required for sporogenic hyphal branches in Streptomyces griseus.
Ontology highlight
ABSTRACT: To identify sporulation-specific proteins that might serve as targets of developmental regulatory factors in Streptomyces, we examined total proteins of Streptomyces griseus by two-dimensional gel electrophoresis. Among five proteins that were present at high levels during sporulation but absent from vegetative cells, two of the proteins, P3 and P4, were absent from developmental mutants that undergo aberrant morphogenesis. The deduced amino acid sequence of the gene that encodes P3 (EshA) showed extensive similarity to proteins from mycobacteria and a cyanobacterium, Synechococcus, that are abundant during nutritional stress but whose functions are unknown. Uniquely among these proteins, EshA contains a cyclic nucleotide-binding domain, suggesting that the activity of EshA may be modulated by a cyclic nucleotide. The eshA gene was strongly expressed from a single transcription start site only during sporulation, and accumulation of the eshA transcript depended on a developmental gene, bldA. During submerged sporulation, a null mutant strain that produced no EshA could not extend sporogenic hyphae from new branch points but instead accelerated septation and spore maturation at the preexisting vegetative filaments. These results indicated that EshA is required for the growth of sporogenic hyphae and localization of septation and spore maturation but not for spore viability.
SUBMITTER: Kwak J
PROVIDER: S-EPMC95199 | biostudies-literature | 2001 May
REPOSITORIES: biostudies-literature
ACCESS DATA