Unknown

Dataset Information

0

Optically Resonant Bulk Heterojunction PbS Quantum Dot Solar Cell.


ABSTRACT: We design an optically resonant bulk heterojunction solar cell to study optoelectronic properties of nanostructured p-n junctions. The nanostructures yield strong light-matter interaction as well as distinct charge-carrier extraction behavior, which together improve the overall power conversion efficiency. We demonstrate high-resolution substrate conformal soft-imprint lithography technology in combination with state-of-the art ZnO nanoparticles to create a nanohole template in an electron transport layer. The nanoholes are infiltrated with PbS quantum dots (QDs) to form a nanopatterned depleted heterojunction. Optical simulations show that the absorption per unit volume in the cylindrical QD absorber layer is enhanced by 19.5% compared to a planar reference. This is achieved for a square array of QD nanopillars of 330 nm height and 320 nm diameter, with a pitch of 500 nm on top of a residual QD layer of 70 nm, surrounded by ZnO. Electronic simulations show that the patterning results in a current gain of 3.2 mA/cm2 and a slight gain in voltage, yielding an efficiency gain of 0.4%. Our simulations further show that the fill factor is highly sensitive to the patterned structure. This is explained by the electric field strength varying strongly across the patterned absorber. We outline a path toward further optimized optically resonant nanopattern geometries with enhanced carrier collection properties. We demonstrate a 0.74 mA/cm2 current gain for a patterned cell compared to a planar cell in experiments, owing to a much improved infrared response, as predicted by our simulations.

SUBMITTER: Tabernig SW 

PROVIDER: S-EPMC9527793 | biostudies-literature | 2022 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Optically Resonant Bulk Heterojunction PbS Quantum Dot Solar Cell.

Tabernig Stefan W SW   Yuan Lin L   Cordaro Andrea A   Teh Zhi Li ZL   Gao Yijun Y   Patterson Robert J RJ   Pusch Andreas A   Huang Shujuan S   Polman Albert A  

ACS nano 20220829 9


We design an optically resonant bulk heterojunction solar cell to study optoelectronic properties of nanostructured p-n junctions. The nanostructures yield strong light-matter interaction as well as distinct charge-carrier extraction behavior, which together improve the overall power conversion efficiency. We demonstrate high-resolution substrate conformal soft-imprint lithography technology in combination with state-of-the art ZnO nanoparticles to create a nanohole template in an electron trans  ...[more]

Similar Datasets

| S-EPMC9053083 | biostudies-literature
| S-EPMC11234412 | biostudies-literature
| S-EPMC9081098 | biostudies-literature
| S-EPMC7863069 | biostudies-literature
| S-EPMC4928821 | biostudies-literature
| S-EPMC4448528 | biostudies-literature
| S-EPMC3715763 | biostudies-literature
| S-EPMC5109221 | biostudies-literature
| S-EPMC10602987 | biostudies-literature
| S-EPMC7404161 | biostudies-literature