Ontology highlight
ABSTRACT: Background
Aedes aegypti is the major vector of dengue that threatens public health in tropical and subtropical regions. Pyrethroid-based control strategies effectively control this vector, but the repeated usage of the same insecticides leads to resistance and hampers control efforts. Therefore, efficient and prompt monitoring of insecticide resistance in local mosquito populations is critical for dengue control.Methodology/principal finding
We collected Ae. aegypti in southern Taiwan in March and October 2016. We analyzed the voltage-gated sodium channel (vgsc) genotypes of parentals (G0) and G1 adults after cypermethrin insecticide bioassay. Our results showed that four VGSC mutations (S989P, V1016G, F1534C, and D1763Y) associated with resistance were commonly detected in field-collected Ae. aegypti. The frequencies of these four mutations in the local mosquito population were significantly higher in October (0.29, 0.4, 0.27 and 0.11) than in March (0.09, 0.16, 0.18 and 0.03). Specific vgsc combined genotypes composed of the one to four such mutations (SGFY/SGFY, SVCD/SVCD, SGFY/PGFD, SVCD/SGFY, PGFD/PGFD, and SVCD/PGFD) shifted towards higher frequencies in October, implying their resistance role. In addition, the cypermethrin exposure bioassay data supported the field observations. Moreover, our study observed an association between the resistance level and the proportion of resistance genotypes in the population.Conclusions/significance
This is the first study to demonstrate the role of four-locus vgsc genotypes in resistance evaluation in a local Ae. aegypti population in Taiwan. This alternative method using resistance-associated genotypes as an indicator of practically insecticide resistance monitoring is a useful tool for providing precise and real-time information for decision makers.
SUBMITTER: Chung HH
PROVIDER: S-EPMC9531798 | biostudies-literature | 2022 Sep
REPOSITORIES: biostudies-literature
Chung Han-Hsuan HH Tsai Cheng-Hui CH Teng Hwa-Jen HJ Tsai Kun-Hsien KH
PLoS neglected tropical diseases 20220922 9
<h4>Background</h4>Aedes aegypti is the major vector of dengue that threatens public health in tropical and subtropical regions. Pyrethroid-based control strategies effectively control this vector, but the repeated usage of the same insecticides leads to resistance and hampers control efforts. Therefore, efficient and prompt monitoring of insecticide resistance in local mosquito populations is critical for dengue control.<h4>Methodology/principal finding</h4>We collected Ae. aegypti in southern ...[more]