Unknown

Dataset Information

0

Longitudinal Analysis of Antimicrobial Resistance among Enterococcus Species Isolated from Australian Beef Cattle Faeces at Feedlot Entry and Exit.


ABSTRACT: Enterococcus faecium are commensal bacteria inhabiting the gastrointestinal tract of animals and humans and an important cause of drug-resistant nosocomial infections. This longitudinal study aimed to determine whether changes in the antimicrobial resistance (AMR) phenotype and genotype occurred among Enterococcus spp. isolated from cattle rectal samples obtained at the entry to and exit from an Australian feedlot. The samples obtained at the feedlot induction yielded enterococci (104/150; 69.3%), speciated as E. hirae (90/104; 86.5%), E. faecium (9/104; 8.7%), E. mundtii (3/104; 2.9%), E. durans, and E. casseliflavus (1/104; 1.0% each). AMR was observed to lincomycin (63/104; 60.6%), daptomycin (26/104; 25.0%), nitrofurantoin (9/104; 8.7%), ciprofloxacin (7/104; 6.7%), tetracycline (5/104; 4.8%), tigecycline (4/104; 3.9%), and quinupristin/dalfopristin (3/104; 2.9%). From the rectal swab samples collected at the abattoir from the same animals (i.e., the feedlot exit), the enterococci recovery was significantly higher (144/150; 96.0%), with a marked shift in species distribution dominated by E. faecium (117/144; 81.3%). However, the prevalence of AMR to individual antimicrobials remained largely static between the entry and exit except for the increased resistance to nitrofurantoin (77/144; 53.5%) and quinupristin/dalfopristin (26/144; 18.1%). Overall, 13 AMR genes were observed among the 62 E. faecium isolates. These included aac(6')Ii, aac(6')-Iid, and ant(6)-Ia (aminoglycosides); eatAv, lnu(G), vat(E), msr(C), and erm(B) (macrolides, lincosamides, and streptogramins); efmA (fluoroquinolones); and tet(45), tet(L), tet(M), and tet(S) (tetracyclines). The results confirm the presence of fluoroquinolone- and streptogramin-resistant enterococci in cattle faeces at the feedlot entry in the absence of antimicrobial selection pressure. E. faecium, exhibiting increased nitrofurantoin resistance, became the dominant Enterococcus spp. during the feeding period.

SUBMITTER: Messele YE 

PROVIDER: S-EPMC9559632 | biostudies-literature | 2022 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Longitudinal Analysis of Antimicrobial Resistance among <i>Enterococcus</i> Species Isolated from Australian Beef Cattle Faeces at Feedlot Entry and Exit.

Messele Yohannes E YE   Hasoon Mauida F MF   Trott Darren J DJ   Veltman Tania T   McMeniman Joe P JP   Kidd Stephen P SP   Low Wai Y WY   Petrovski Kiro R KR  

Animals : an open access journal from MDPI 20221006 19


<i>Enterococcus faecium</i> are commensal bacteria inhabiting the gastrointestinal tract of animals and humans and an important cause of drug-resistant nosocomial infections. This longitudinal study aimed to determine whether changes in the antimicrobial resistance (AMR) phenotype and genotype occurred among <i>Enterococcus</i> spp. isolated from cattle rectal samples obtained at the entry to and exit from an Australian feedlot. The samples obtained at the feedlot induction yielded enterococci (  ...[more]

Similar Datasets

| S-EPMC10376260 | biostudies-literature
| S-EPMC10732036 | biostudies-literature
| S-EPMC5662634 | biostudies-literature
| S-EPMC5436749 | biostudies-literature
| S-EPMC11810952 | biostudies-literature
| S-EPMC8597637 | biostudies-literature
| S-EPMC9792868 | biostudies-literature
| S-EPMC9454709 | biostudies-literature
| S-EPMC9969494 | biostudies-literature
| S-EPMC7714776 | biostudies-literature