Unknown

Dataset Information

0

Development of the Novel Bifunctional Fusion Protein BR102 That Simultaneously Targets PD-L1 and TGF-β for Anticancer Immunotherapy.


ABSTRACT: Immune checkpoint inhibitors (ICIs) are remarkable breakthroughs in treating various types of cancer, but many patients still do not derive long-term clinical benefits. Increasing evidence shows that TGF-β can promote cancer progression and confer resistance to ICI therapies. Consequently, dual blocking of TGF-β and immune checkpoint may provide an effective approach to enhance the effectiveness of ICI therapies. Here, we reported the development and preclinical characterization of a novel bifunctional anti-PD-L1/TGF-β fusion protein, BR102. BR102 comprises an anti-PD-L1 antibody fused to the extracellular domain (ECD) of human TGF-βRII. BR102 is capable of simultaneously binding to TGF-β and PD-L1. Incorporating TGF-βRII into BR102 does not alter the PD-L1 blocking activity of BR102. In vitro characterization further demonstrated that BR102 could disrupt TGF-β-induced signaling. Moreover, BR102 significantly inhibits tumor growth in vivo and exerts a superior antitumor effect compared to anti-PD-L1. Administration of BR102 to cynomolgus monkeys is well-tolerated, with only minimal to moderate and reversing red cell changes noted. The data demonstrated the efficacy and safety of the novel anti-PD-L1/TGF-β fusion protein and supported the further clinical development of BR102 for anticancer therapy.

SUBMITTER: Wu ZH 

PROVIDER: S-EPMC9562016 | biostudies-literature | 2022 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Development of the Novel Bifunctional Fusion Protein BR102 That Simultaneously Targets PD-L1 and TGF-β for Anticancer Immunotherapy.

Wu Zhen-Hua ZH   Li Na N   Gao Zhang-Zhao ZZ   Chen Gang G   Nie Lei L   Zhou Ya-Qiong YQ   Jiang Mei-Zhu MZ   Chen Yao Y   Chen Juan J   Mei Xiao-Fen XF   Hu Feng F   Wang Hai-Bin HB  

Cancers 20221010 19


Immune checkpoint inhibitors (ICIs) are remarkable breakthroughs in treating various types of cancer, but many patients still do not derive long-term clinical benefits. Increasing evidence shows that TGF-β can promote cancer progression and confer resistance to ICI therapies. Consequently, dual blocking of TGF-β and immune checkpoint may provide an effective approach to enhance the effectiveness of ICI therapies. Here, we reported the development and preclinical characterization of a novel bifun  ...[more]

Similar Datasets

2018-01-18 | GSE107801 | GEO
| S-EPMC8181498 | biostudies-literature
| S-EPMC7745517 | biostudies-literature
2022-10-01 | GSE188305 | GEO
| S-EPMC5665067 | biostudies-literature
| S-EPMC7484916 | biostudies-literature
| S-EPMC10373067 | biostudies-literature
| S-EPMC9474582 | biostudies-literature
| S-EPMC8266790 | biostudies-literature
| S-EPMC9907041 | biostudies-literature