Project description:Geographic atrophy (GA) of the retinal pigment epithelium (RPE) is a devastating complication of age-related macular degeneration (AMD). GA may be classified as drusen-related (drusen-associated GA) or neovascularization-related (neovascular-associated GA). Drusen-related GA remains a large public health concern due to the burden of blindness it produces, but pathophysiology of the condition is obscure and there are no proven treatment options. Genotyping, cell biology, and clinical imaging point to upregulation of parainflammatory pathways, oxidative stress, and choroidal sclerosis as contributors, among other factors. Onset and monitoring of progression is accomplished through clinical imaging instrumentation such as optical coherence tomography, photography, and autofluorescence, which are the tools most helpful in determining end points for clinical trials at present. A number of treatment approaches with diverse targets are in development at this time, some of which are in human clinical trials. Neovascular-associated GA is a consequence of RPE loss after development of neovascular AMD. The neovascular process leads to a plethora of cellular stresses such as ischemia, inflammation, and dramatic changes in cell environment that further taxes RPE cells already dysfunctional from drusen-associated changes. GA may therefore develop secondary to the neovascular process de novo or preexisting drusen-associated GA may continue to worsen with the development of neovascular AMD. Neovascular-associated GA is a prominent cause of continued vision loss in patients with otherwise successfully treated neovascular AMD. Clearly, treatment with vascular endothelial growth factor (VEGF) inhibitors early in the course of the neovascular disease is of great clinical benefit. However, there is a rationale and some suggestive evidence that anti-VEGF agents themselves could be toxic to RPE and enhance neovascular-associated GA. The increasing prevalence of legal blindness from this condition due to the aging of the general population lends urgency to the search for a therapy to ameliorate GA.
Project description:Geographic atrophy (GA) secondary to age-related macular degeneration (AMD) is a retinal neurodegenerative disorder. Human genetic data support the complement system as a key component of pathogenesis in AMD, which has been further supported by pre-clinical and recent clinical studies. However, the involvement of the different complement pathways (classical, lectin, alternative), and thus the optimal complement inhibition target, has yet to be fully defined. There is evidence that C1q, the initiating molecule of the classical pathway, is a key driver of complement activity in AMD. C1q is expressed locally by infiltrating phagocytic cells and C1q-activating ligands are present at disease onset and continue to accumulate with disease progression. The accumulation of C1q on photoreceptor synapses with age and disease is consistent with its role in synapse elimination and neurodegeneration that has been observed in other neurodegenerative disorders. Furthermore, genetic deletion of C1q, local pharmacologic inhibition within the eye, or genetic deletion of downstream C4 prevents photoreceptor cell damage in mouse models. Hence, targeting the classical pathway in GA could provide a more specific therapeutic approach with potential for favorable efficacy and safety.
Project description:PurposeTo evaluate the effect of eculizumab, a systemic inhibitor of complement component (C5), on the growth of geographic atrophy (GA) in patients with age-related macular degeneration (AMD).DesignProspective, double-masked, randomized clinical trial.ParticipantsPatients with GA measuring from 1.25 to 18 mm(2) based on spectral-domain optical coherence tomography imaging.MethodsPatients were randomized 2:1 to receive intravenous eculizumab or placebo over 6 months. In the eculizumab treatment arm, the first 10 patients received a low-dose regimen of 600 mg weekly for 4 weeks followed by 900 mg every 2 weeks until week 24, and the next 10 patients received a high-dose regimen of 900 mg weekly for 4 weeks followed by 1200 mg every 2 weeks until week 24. The placebo group was infused with saline. Patients were observed off treatment for an additional 26 weeks. Both normal-luminance and low-luminance visual acuities were measured throughout the study, and the low-luminance deficits were calculated as the difference between the letter scores.Main outcome measuresChange in area of GA at 26 weeks.ResultsThirty eyes of 30 patients were enrolled. Eighteen fellow eyes also met inclusion criteria and were analyzed as a secondary endpoint. For the 30 study eyes, mean square root of GA area measurements ± standard deviation at baseline were 2.55 ± 0.94 and 2.02 ± 0.74 mm in the eculizumab and placebo groups, respectively (P = 0.13). At 26 weeks, GA enlarged by a mean of 0.19 ± 0.12 and 0.18 ± 0.15 mm in the eculizumab and placebo groups, respectively (P = 0.96). At 52 weeks of follow-up, GA enlarged by a mean of 0.37 ± 0.22 mm in the eculizumab-treated eyes and by a mean of 0.37 ± 0.21 mm in the placebo group (P = 0.93, 2 sample t test). None of the eyes converted to wet AMD. No drug-related adverse events were identified.ConclusionsSystemic complement inhibition with eculizumab was well tolerated through 6 months but did not decrease the growth rate of GA significantly. However, there was a statistically significant correlation between the low-luminance deficit at baseline and the progression of GA over 6 months.
Project description:Age-related macular degeneration (AMD) is a leading cause of irreversible blindness among older adults in the Western world. While therapies exist for patients with exudative AMD, there are currently no approved therapies for non-exudative AMD and its advanced form of geographic atrophy (GA). The discovery of genetic variants in complement protein loci with increased susceptibility to AMD has led to the investigation of the role of complement inhibition in AMD with a focus on GA. Here, we review completed and ongoing clinical trials evaluating the safety and efficacy of these studies. Overall, complement inhibition in GA has yielded mixed results. The inhibition of complement factor D has failed pivotal phase 3 trials. Studies of C3 and C5 inhibition meeting their primary endpoint are limited by high rates of discontinuation and withdrawal in the treatment arm and higher risks of conversion to exudative AMD. Studies evaluating other complement members (CFB, CFH, CFI and inhibitors of membrane attack complex-CD59) are ongoing and could offer other viable strategies.
Project description:Geographic atrophy (GA) is a progressive, advanced form of age-related macular degeneration leading to visual function impairment and irreversible vision loss. Standard clinical tests to evaluate visual function in patients with GA provide poor anatomic-functional correlation, whereas fundus imaging does not assess the visual function deficit. Microperimetry is a psychophysical visual function test that spatially maps retinal sensitivity and allows for identification of correlation of anatomic features with visual function. In this review, we present an overview of mesopic microperimetry for GA, including commercially available microperimetry devices, strategies to capture a mesopic microperimetry test, and strategies to assess and interpret microperimetry data in patients with GA. We demonstrate the importance of microperimetry data for assessing GA progression and for evaluating visual function loss through anatomic-functional correlations. Although valuable, current microperimetry tests require an extensive time commitment from the patient and examiner, and the development of faster, more reproducible and accessible methods is important to enable broader use of microperimetry in both clinical and research settings.
Project description:PurposeIn macula-wide analyses, spectral-domain (SD) optical coherence tomography (OCT) features including drusen volume, hyperreflective foci, and OCT-reflective drusen substructures independently predict geographic atrophy (GA) onset secondary to age-related macular degeneration (AMD). We sought to identify SD OCT features in the location of new GA before its onset.DesignRetrospective study.ParticipantsAge-Related Eye Disease Study 2 Ancillary SD OCT Study participants.MethodsWe analyzed longitudinally captured SD OCT images and color photographs from 488 eyes of 488 participants with intermediate AMD at baseline. Sixty-two eyes with sufficient image quality demonstrated new-onset GA on color photographs during study years 2 through 7. The area of new-onset GA and one size-matched control region in the same eye were segmented separately, and corresponding spatial volumes on registered SD OCT images at the GA incident year and at 2, 3, and 4 years previously were defined. Differences in SD OCT features between paired precursor regions were evaluated through matched-pairs analyses.Main outcome measuresLocalized SD OCT features 2 years before GA onset.ResultsCompared with paired control regions, GA precursor regions at 2, 3, and 4 years before (n = 54, 33, and 25, respectively) showed greater drusen volume (P = 0.01, P = 0.003, and P = 0.003, respectively). At 2 and 3 years before GA onset, they were associated with the presence of hypertransmission (P < 0.001 and P = 0.03, respectively), hyperreflective foci (P < 0.001 and P = 0.045, respectively), OCT-reflective drusen substructures (P = 0.004 and P = 0.03, respectively), and loss or disruption of the photoreceptor zone, ellipsoid zone, and retinal pigment epithelium (RPE, P < 0.001 and P = 0.005-0.045, respectively). At 4 years before GA onset, precursor regions were associated with photoreceptor zone thinning (P = 0.007) and interdigitation zone loss (P = 0.045).ConclusionsEvolution to GA is heralded by early local photoreceptor changes and drusen accumulation, detectable 4 years before GA onset. These precede other anatomic heralds such as RPE changes and drusen substructure emergence detectable 1 to 2 years before GA. This study thus identified earlier end points for GA as potential therapeutic targets in clinical trials.
Project description:ImportanceSensitive outcome measures for disease progression are needed for treatment trials in geographic atrophy (GA) secondary to age-related macular degeneration (AMD).ObjectiveTo quantify photoreceptor degeneration outside regions of GA in eyes with nonexudative AMD, to evaluate its association with future GA progression, and to characterize its spatio-temporal progression.Design, setting, and participantsMonocenter cohort study (Directional Spread in Geographic Atrophy [NCT02051998]) and analysis of data from a normative data study at a tertiary referral center. One hundred fifty-eight eyes of 89 patients with a mean (SD) age of 77.7 (7.1) years, median area of GA of 8.87 mm2 (IQR, 4.09-15.60), and median follow-up of 1.1 years (IQR, 0.52-1.7 years), as well as 93 normal eyes from 93 participants.ExposuresLongitudinal spectral-domain optical coherence tomography (SD-OCT) volume scans (121 B-scans across 30° × 25°) were segmented with a deep-learning pipeline and standardized in a pointwise manner with age-adjusted normal data (z scores). Outer nuclear layer (ONL), photoreceptor inner segment (IS), and outer segment (OS) thickness were quantified along evenly spaced contour lines surrounding GA lesions. Linear mixed models were applied to assess the association between photoreceptor-related imaging features and GA progression rates and characterize the pattern of photoreceptor degeneration over time.Main outcomes and measuresAssociation of ONL thinning with follow-up time (after adjusting for age, retinal topography [z score], and distance to the GA boundary).ResultsThe study included 158 eyes of 89 patients (51 women and 38 men) with a mean (SD) age of 77.7 (7.1) years. The fully automated B-scan segmentation was accurate (dice coefficient, 0.82; 95% CI, 0.80-0.85; compared with manual markings) and revealed a marked interpatient variability in photoreceptor degeneration. The ellipsoid zone (EZ) loss-to-GA boundary distance and OS thickness were prognostic for future progression rates. Outer nuclear layer and IS thinning over time was significant even when adjusting for age and proximity to the GA boundary (estimates of -0.16 μm/y; 95% CI, -0.30 to -0.02; and -0.17 μm/y; 95% CI, -0.26 to -0.09).Conclusions and relevanceDistinct and progressive alterations of photoreceptor laminae (exceeding GA spatially) were detectable and quantifiable. The degree of photoreceptor degeneration outside of regions of retinal pigment epithelium atrophy varied markedly between eyes and was associated with future GA progression. Macula-wide photoreceptor laminae thinning represents a potential candidate end point to monitor treatment effects beyond mere GA lesion size progression.
Project description:Geographic atrophy (GA) affects around 5 million individuals worldwide. Genome-wide, histopathologic, in vitro and animal studies have implicated the activation of the complement system and chronic local inflammation in the pathogenesis of GA. Recently, clinical trials have demonstrated that an intravitreal injection of pegcetacoplan, a C3 inhibitor, and avacincaptad pegol, a C5 inhibitor, both statistically significantly reduce the growth of GA up to 20% in a dose-dependent fashion. Furthermore, the protective effect of both pegcetacoplan and avacincaptad appear to increase with time. However, despite these anatomic outcomes, visual function has not improved as these drugs appear to only slow down the degenerative process. Unexpected adverse events included conversion to exudative NV-AMD with both drugs. Occlusive retinal vasculitis and anterior ischemic optic neuropathy have been reported in pegcetacoplan-treated eyes.
Project description:PurposeGeographic atrophy (GA) is an advanced, vision-threatening form of age-related macular degeneration (AMD) affecting approximately five million individuals worldwide. To date, there are no approved therapeutics for GA treatment; however, several are in clinical trials. This review focuses on the pathophysiology of GA, particularly the role of complement cascade dysregulation and emerging therapies targeting the complement cascade.MethodsPrimary literature search on PubMed for GA, complement cascade in age-related macular degeneration. ClinicalTrials.gov was searched for natural history studies in GA and clinical trials of drugs targeting the complement cascade for GA.ResultsCumulative damage to the retina by aging, environmental stress, and other factors triggers inflammation via multiple pathways, including the complement cascade. When regulatory components in these pathways are compromised, as with several GA-linked genetic risk factors in the complement cascade, chronic inflammation can ultimately lead to the retinal cell death characteristic of GA. Complement inhibition has been identified as a key candidate for therapeutic intervention, and drugs targeting the complement pathway are currently in clinical trials.ConclusionThe complement cascade is a strategic target for GA therapy. Further research, including on natural history and genetics, is crucial to expand the understanding of GA pathophysiology and identify effective therapeutic targets.