Unknown

Dataset Information

0

Graphene Quantum Dots Modified Upconversion Nanoparticles for Photodynamic Therapy.


ABSTRACT: Photodynamic therapy (PDT), as a novel technique, has been extensively employed in cancer treatment by utilizing reactive oxygen species (ROS) to kill malignant cells. However, most photosensitizers (PSs) are short of ROS yield and affect the therapeutic effect of PDT. Thus, there is a substantial demand for the development of novel PSs for PDT to advance its clinical translation. In this study, we put forward a new strategy for PS synthesis via modifying graphene quantum dots (GQDs) on the surface of rare-earth elements doped upconversion nanoparticles (UCNPs) to produce UCNPs@GQDs with core-shell structure. This new type of PSs combined the merits of UCNPs and GQDs and produced ROS efficiently under near-infrared light excitation to trigger the PDT process. UCNPs@GQDs exhibited high biocompatibility and obvious concentration-dependent PDT efficiency, shedding light on nanomaterials-based PDT development.

SUBMITTER: Li Y 

PROVIDER: S-EPMC9604409 | biostudies-literature | 2022 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

Graphene Quantum Dots Modified Upconversion Nanoparticles for Photodynamic Therapy.

Li Yuting Y   Wang Yufei Y   Shang Hong H   Wu Jing J  

International journal of molecular sciences 20221019 20


Photodynamic therapy (PDT), as a novel technique, has been extensively employed in cancer treatment by utilizing reactive oxygen species (ROS) to kill malignant cells. However, most photosensitizers (PSs) are short of ROS yield and affect the therapeutic effect of PDT. Thus, there is a substantial demand for the development of novel PSs for PDT to advance its clinical translation. In this study, we put forward a new strategy for PS synthesis via modifying graphene quantum dots (GQDs) on the surf  ...[more]

Similar Datasets

| S-EPMC9419651 | biostudies-literature
2017-03-17 | GSE96720 | GEO
| S-EPMC8962365 | biostudies-literature
| S-EPMC5497257 | biostudies-literature
| S-EPMC6435707 | biostudies-literature
| S-EPMC6645081 | biostudies-literature
| S-EPMC7190325 | biostudies-literature
| S-EPMC4294652 | biostudies-literature
| S-EPMC5058637 | biostudies-literature
| S-EPMC4770318 | biostudies-literature