Project description:To develop an understanding of the photochromic effect in rare-earth metal oxyhydride thin films (REH3-2x O x , here RE = Y), we explore the aliovalent doping of the RE cation. We prepared Ca-doped yttrium oxyhydride thin films ((Ca z Y1-z )H x O y ) by reactive magnetron cosputtering with Ca doping concentrations between 0 and 36 at. %. All of the films are semiconductors with a constant optical band gap for Ca content below 15%, while the band gap expands for compositions above 15%. Ca doping affects the photochromic properties, resulting in (1) a lower photochromic contrast, likely due to a lower H- concentration, and (2) a faster bleaching speed, caused by a higher pre-exponential factor. Overall, these results point to the importance of the H- concentration for the formation of a "darkened" phase and the local rearrangement of these H- for the kinetics of the process.
Project description:Thin films of rare earth metal oxyhydrides show a photochromic effect, the precise mechanism of which is yet unknown. Here, we made thin films of NdH3-2x O x and show that we can change the band gap, crystal structure, and photochromic contrast by tuning the composition (O2-:H-) via the sputtering deposition pressure. To protect these films from rapid oxidation, we add a thin ALD coating of Al2O3, which increases the lifetime of the films from 1 day to several months. Encapsulation of the films also influences photochromic bleaching, changing the time dependency from first-order kinetics. As well, the partial annealing which occurs during the ALD process results in a dramatically slower bleaching speed, revealing the importance of defects for the reversibility (bleaching speed) of photochromism.
Project description:Thin films of rare-earth (RE)-oxygen-hydrogen compounds prepared by reactive magnetron sputtering show a unique color-neutral photochromic effect at ambient conditions. While their optical properties have been studied extensively, the understanding of the relationship between photochromism, chemical composition, and structure is limited. Here we establish a ternary RE-O-H composition-phase diagram based on chemical composition analysis by a combination of Rutherford backscattering and elastic recoil detection. The photochromic films are identified as oxyhydrides with a wide composition range described by the formula REO xH3-2 x where 0.5 ≤ x ≤ 1.5. We propose an anion-disordered structure model based on the face-centered cubic unit cell where the O2- and H- anions occupy tetrahedral and octahedral interstices. The optical band gap varies continuously with the anion ratio, demonstrating the potential of band gap tuning for reversible optical switching applications.
Project description:A high-rate lithium ion battery electrode consisting of nanostructured copper-doped TiO2 films, synthesized using a single-step, template-free aerosol chemical vapor deposition technique, is reported herein. A narrowing of the band gap of the copper-doped films from 2.92 to 1.93 eV corresponds to a large increase in electronic conductivity, overcoming a major drawback of pristine TiO2 in electronic applications. Lithium-ion batteries using copper-doped films as the negative electrode exhibit improved charge retention at ultra-high charge rates, up to 50C. Additionally, over 2000 charge-discharge cycles at a rate of 10C, the copper-doped TiO2 electrodes display higher stable cycling capacities. Cyclic voltammetry (CV) and a galvanostatic intermittent titration technique (GITT) provide insight into the chemical diffusion of Li+ in the TiO2 matrix, with copper-doped TiO2 electrodes exhibiting an order of magnitude higher value in CV measurements over pristine TiO2. GITT provided the state-of-charge (SoC) resolved chemical diffusion coefficient of Li+ and suggests that a minimum value occurs at a moderate SoC of 60%, with values near the extremes being over two orders of magnitude higher. Both techniques indicate increased Li+ mobility due to copper-doping, supporting improved electrochemical performance in ultra-high rate battery testing.
Project description:Oxyhydrides of rare-earth metals (REMOHs) exhibit notable photochromic behaviors. Among these, yttrium oxyhydride (YHO) stands out for its impressive transparency and swift UV-responsive color change, positioning it as an optimal material for self-cleaning window applications. Although semiconductor photocatalysis holds potential solutions for critical environmental issues, optimizing the photocatalytic efficacy of photochromic substances has not been adequately addressed. This research advances the study of REMOHs, focusing on the properties of gadolinium oxyhydride (GdHO) both theoretically and experimentally. The electronic and structural characteristics of GdHO, vital for ceramic technology, are thoroughly examined. Explicitly determined work functions for GdH2, GdHO, and Gd2O3 stand at 3.4 eV, 3.0 eV, and 4.3 eV, respectively. Bader charge analysis showcases GdHO's intricate bonding attributes, whereas its electron localization function majorly presents an ionic nature. The charge neutrality level is situated about 0.33 eV below the top valence band, highlighting these materials' inclination for acceptor-dominant electrical conductivity. Remarkably, this research unveils GdHO films' photocatalytic capabilities for the first time. Even with their restricted surface due to thinness, these films follow the Langmuir-Hinshelwood degradation kinetics, ensuring total degradation of methylene blue in a day. It was observed that GdHO's work function diminishes with reduced deposition pressure, and UV exposure further decreases it by 0.2 eV-a change that reverts post-UV exposure. The persistent stability of GdHO films, hinting at feasible recyclability, enhances their potential efficiency, underlining their viability in practical applications. Overall, this study accentuates GdHO's pivotal role in electronics and photocatalysis, representing a landmark advancement in the domain.
Project description:The role of damping in the spin Seebeck effect (SSE) was studied experimentally for the first time. The experiments used Y3Fe5O12 (YIG)/Pt bilayered structures where the YIG films exhibit very similar structural and static magnetic properties but very different damping. The data show that a decrease in the damping gives rise to an increase in the SSE coefficient, which is qualitatively consistent with some of the theoretical models. This response also shows quasi-linear behavior, which was not predicted explicitly by previous studies. The data also indicate that the SSE coefficient shows no notable correlations with the enhanced damping due to spin pumping, which can be understood in the frame of two existing models.
Project description:We report preferential orientation control in photochromic gadolinium oxyhydride (GdHO) thin films deposited by a two-step process. Gadolinium hydride (GdH2-x) films were grown by reactive magnetron sputtering, followed by oxidation in air. The preferential orientation, grain size, anion concentrations and photochromic response of the films were strongly dependent on the deposition pressure. The GdHO films showed a preferential orientation along the [100] direction and exhibited photochromism when synthesized at deposition pressures of up to 5.8 Pa. The photochromic contrast was larger than 20% when the films were deposited below 2.8 Pa with a 0.22 H2/Ar flow ratio. We argue that the relation of preferential orientation and the post deposition oxidation since oxygen concentration is known to be a key parameter for photochromism in rare-earth oxyhydride thin films. The experimental observations described above were explained by the decrease of the grain size as a result of the increase of the deposition pressure of the sputtering gas, followed by a higher oxygen incorporation.
Project description:Scalable heterojunctions based on two-dimensional transitional metal dichalcogenides are of great importance for their applications in the next generation of electronic and optoelectronic devices. However, reliable techniques for the fabrication of such heterojunctions are still at its infancy. Here we demonstrate a simple technique for the scalable fabrication of lateral heterojunctions via selective chemical doping of TMD thin films. We demonstrate that the resistance of large area MoS2 and MoSe2 thin film, prepared via low pressure chalcogenation of molybdenum film, decreases by up to two orders of magnitude upon doping using benzyl viologen (BV) molecule. X-ray photoelectron spectroscopy (XPS) measurements confirms n-doping of the films by BV molecules. Since thin films of MoS2 and MoSe2 are typically more resistive than their exfoliated and co-evaporation based CVD counterparts, the decrease in resistance by BV doping represents a significant step in the utilization of these samples in electronic devices. Using selective BV doping, we simultaneously fabricated many lateral heterojunctions in 1 cm2 MoS2 and 1 cm2 MoSe2 films. The electrical transport measurements performed across the heterojunctions exhibit current rectification behavior due to a band offset created between the doped and undoped regions of the material. Almost 84% of the fabricated devices showed rectification behavior demonstrating the scalability of this technique.
Project description:The compensation of the depolarization field in ferroelectric layers requires the presence of a suitable amount of charges able to follow any variation of the ferroelectric polarization. These can be free carriers or charged defects located in the ferroelectric material or free carriers coming from the electrodes. Here we show that a self-doping phenomenon occurs in epitaxial, tetragonal ferroelectric films of Pb(Zr0.2Ti0.8)O3, consisting in generation of point defects (vacancies) acting as donors/acceptors. These are introducing free carriers that partly compensate the depolarization field occurring in the film. It is found that the concentration of the free carriers introduced by self-doping increases with decreasing the thickness of the ferroelectric layer, reaching values of the order of 10(26) m(-3) for 10 nm thick films. One the other hand, microscopic investigations show that, for thicknesses higher than 50 nm, the 2O/(Ti+Zr+Pb) atomic ratio increases with the thickness of the layers. These results suggest that the ratio between the oxygen and cation vacancies varies with the thickness of the layer in such a way that the net free carrier density is sufficient to efficiently compensate the depolarization field and to preserve the outward direction of the polarization.
Project description:Thermoelectric materials with a large Seebeck coefficient (S) and electrical conductivity (σ) are required to efficiently convert waste heat into electricity, but their interdependence makes simultaneously improving these variables immensely challenging. To address this problem, bilayers (BL) of poly(diallyldimethylammonium chloride) (PDDA) and double-walled carbon nanotubes (DWNT), stabilized by KBr-doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) were deposited using layer-by-layer (LbL) assembly. Doping PEDOT:PSS with KBr, prior to DWNT dispersion and LbL assembly, results in a six-fold improvement in electrical conductivity with little change in the Seebeck coefficient. A maximum power factor (PF = S 2 σ) of 626 ± 39 μW m-1 K-2 is obtained from a 20 BL PDDA/PEDOT:PSS-DWNT film (∼46 nm thick), where PEDOT:PSS was doped with 3 mmol KBr. This large PF is due to the formation of a denser film containing a greater proportion of DWNT, which was influenced by the charge-screening effects imparted by the salt dopant that separates PSS from PEDOT. This study demonstrates a relatively simple strategy to significantly increase the thermoelectric performance of fully organic nanocomposites that are useful for low temperature thermoelectric devices.