Project description:BackgroundPalpation of tumors during thoracoscopic surgery remains difficult, and identification of deep-seated tumors may be impossible. This preclinical study investigated the usefulness of a novel indocyanine green (ICG) fluorescence spectroscopy system for tumor localization.MethodsICG was diluted to 5.0×10-2 mg/mL in fetal bovine serum (FBS) and mixed with silicone resin to prepare pseudo-tumors. Sponges of different densities and a porcine lung were placed on top of the pseudo-tumors, which were examined using a novel fluorescence spectroscopy system and a near-infrared (NIR) camera. Spectra were measured for different sponge and lung thicknesses, and the lung spectra were measured during both inflation and deflation.ResultsThe fluorescence spectroscopy system was able to identify tumors at depths ≥15 mm, while the NIR system was not. The spectroscopy system also detected tumors at greater depths when the density of the intervening material was lower. Depending on the density and thickness of the intervening material, the system could detect spectra as deep as 40 mm for sponges and 30 mm for lungs.ConclusionsThis new fluorescence spectroscopy system can be used to identify lung tumors up to a depth of 30 mm in experiments using pseudo-tumors and a porcine lung, which may aid in tumor identification during thoracoscopic surgery.
Project description:Background: Indocyanine green (ICG)-guided near-infrared fluorescence (NIRF) has been recently adopted in pediatric minimally invasive surgery (MIS). This study aimed to report our experience with ICG-guided NIRF in pediatric laparoscopy and robotics and evaluate its usefulness and technique of application in different pediatric pathologies. Methods: ICG technology was adopted in 76 laparoscopic and/or robotic procedures accomplished in a single division of pediatric surgery over a 24-month period (January 2018-2020): 40 (37 laparoscopic, three robotic) left varicocelectomies with intra-operative lymphography; 13 (10 laparoscopic, three robotic) renal procedures: seven partial nephrectomies, three nephrectomies, and three renal cyst deroofings; 12 laparoscopic cholecystectomies; five robotic tumor excisions; three laparoscopic abdominal lymphoma excisions; three thoracoscopic procedures: two lobectomies and one lymph node biopsy for suspected lymphoma. The ICG solution was administered into a peripheral vein in all indications except for varicocele and lymphoma in which it was, respectively, injected into the testis body or the target organ. Regarding the timing of the administration, the ICG solution was administered intra-operatively in all indications except for cholecystectomy in which the ICG injection was performed 15-18 h before surgery. Results: No conversions to open or laparoscopy occurred. No adverse and allergic reactions to ICG or other postoperative complications were reported. Conclusions: Based upon our 2 year experience, we believe that ICG-guided NIRF is a very useful tool in pediatric MIS to perform a true imaged-guided surgery, allowing an easier identification of anatomic structures and an easier surgical performance in difficult cases. The most common applications in pediatric surgery include varicocele repair, difficult cholecystectomy, partial nephrectomy, lymphoma, and tumors excision but further indications will be soon discovered. ICG-enhanced fluorescence was technically easy to apply and safe for the patient reporting no adverse reactions to the product. The main limitation is represented by the specific equipment needed to apply ICG-guided NIRF in laparoscopic procedures, that is not available in all centers whereas the ICG system Firefly® is already integrated into the robotic platform.
Project description:BackgroundIn recent years, the use of Indocyanine Green (ICG) fluorescence-guided surgery during open and laparoscopic procedures has exponentially expanded across various clinical settings. The European Association of Endoscopic Surgery (EAES) initiated a consensus development conference on this topic with the aim of creating evidence-based statements and recommendations for the surgical community.MethodsAn expert panel of surgeons has been selected and invited to participate to this project. Systematic reviews of the PubMed, Embase and Cochrane libraries were performed to identify evidence on potential benefits of ICG fluorescence-guided surgery on clinical practice and patient outcomes. Statements and recommendations were prepared and unanimously agreed by the panel; they were then submitted to all EAES members through a two-rounds online survey and results presented at the EAES annual congress, Barcelona, November 2021.ResultsA total of 18,273 abstracts were screened with 117 articles included. 22 statements and 16 recommendations were generated and approved. In some areas, such as the use of ICG fluorescence-guided surgery during laparoscopic cholecystectomy, the perfusion assessment in colorectal surgery and the search for the sentinel lymph nodes in gynaecological malignancies, the large number of evidences in literature has allowed us to strongly recommend the use of ICG for a better anatomical definition and a reduction in post-operative complications.ConclusionsOverall, from the systematic literature review performed by the experts panel and the survey extended to all EAES members, ICG fluorescence-guided surgery could be considered a safe and effective technology. Future robust clinical research is required to specifically validate multiple organ-specific applications and the potential benefits of this technique on clinical outcomes.
Project description:BackgroundIndocyanine green (ICG) imaging has been increasingly used for intraoperative guidance in colorectal surgery over the past decade. The aim of this study was to review and organize, according to different type of use, all available literature on ICG guided colorectal surgery and highlight areas in need of further research and discuss future perspectives.MethodsPubMed, Scopus, and Google Scholar databases were searched systematically through November 2022 for all available studies on fluorescence-guided surgery in colorectal surgery.ResultsAvailable studies described ICG use in colorectal surgery for perfusion assessment, ureteral and urethral assessment, lymphatic mapping, and hepatic and peritoneal metastases assessment. Although the level of evidence is low, results are promising, especially in the role of ICG in reducing anastomotic leaks.ConclusionsICG imaging is a safe and relatively cheap imaging modality in colorectal surgery, especially for perfusion assessment. Work is underway regarding its use in lymphatic mapping, ureter identification, and the assessment of intraperitoneal metastatic disease.
Project description:BackgroundPulmonary arteriovenous malformation (PAVM) is an abnormal communication between pulmonary vasculatures and has an unclear boundary with surrounding lung tissues. At present, surgeons can only determine its location by preoperative imaging and intraoperative palpation, despite its soft texture. Indocyanine green(ICG), a near-infrared fluorophore, has been demonstrated useful in the accurate identification of vascular tissue. Therefore, we explored its application in PAVM cases.Case presentationWe present two PAVM cases using near-infrared fluorescence (NIF) with 25 mg ICG at 5 mg/ml to achieve intraoperative visualization of the lesion in video-assisted thoracoscopic surgery (VATS). Under the NIF mode, ICG systemic injection led to successive signaling of the anomaly and normal tissues in merely 10 s, which helped us distinguish them efficiently and precisely. A peak signal-to-background ratio of 2.2 confirmed the significant fluorescence difference and excluded interference from carbon dust.ConclusionsWe are the first to report the use of such an approach in delineating the margin of vascular malformation with high contrast, and this new finding may help minimize the damage to lung function in PAVM treatment. Further exploration and validation are needed to determine its role.
Project description:Near-infrared fluorescence imaging with indocyanine green is an emerging technology gaining clinical relevance in the field of oncosurgery. In recent decades, it has also been applied in gastric cancer surgery, spreading among surgeons thanks to the diffusion of minimally invasive approaches and the related development of new optic tools. Its most relevant uses in gastric cancer surgery are sentinel node navigation surgery, lymph node mapping during lymphadenectomy, assessment of vascular anatomy, and assessment of anastomotic perfusion. There is still debate regarding the most effective application, but with relatively no collateral effects and without compromising the operative time, indocyanine green fluorescence imaging carved out a role for itself in gastric resections. This review aims to summarize the current indications and evidence for the use of this tool, including the relevant practical details such as dosages and times of administration.
Project description:ObjectivesAccurate intraoperative identification of small lung tumours is crucial for precise resection of these lesions during video-assisted thoracoscopic surgery. This study aimed to evaluate the feasibility and safety of indocyanine green (ICG) inhalation for intraoperative visualization of lung tumours.MethodsFrom January 2022 to May 2022, 43 patients with lung nodules were included into this study. All patients received intraoperative ICG inhalation for visualization of lung tumours under near-infrared imaging. The primary outcomes of this trial were the detection rate and background-tumour ratio of lung nodules, and the secondary objectives were time to search for nodules and operative time to nodules excision.ResultsA total of 50 pulmonary nodules in 43 patients were identified and completely resected. And 44 lung nodules were detected during intraoperative fluorescent exploration with a median inhaled ICG dose of 18.8 mg. In vivo, the median background-tumour ratio was 7.10. The median detection time of nodules was 100 s and the median operative time to nodules excision was 18 min. Quantification analysis showed that the fluorescence intensity of postoperative sputum declined to ∼10% of the first fluorescent sputum within 20 h. No adverse events attributed to ICG inhalation were recorded during the follow-up period.ConclusionsIntraoperative inhalation of ICG was a feasible and safe method for detection of lung tumours at low dose of ICG. This technique could be a remedial measure for identification of unpalpable lung nodules without preoperative localization.Trial registrationChinese Clinical Trial Registry, Identifier: ChiCTR2100053708.
Project description:ObjectivesIndocyanine green (ICG) is a fluorescent dye which was initially used for liver functional assessment. Moreover, it is of value for intraoperative visualization of liver segments and bile ducts or primary and secondary liver tumors. Especially in minimally invasive liver surgery, this is essential to enhance the precision of anatomical guided surgery and oncological quality. As early adopters of ICG implementation into laparoscopic and robotic-assisted liver surgery in Germany, we summarize the current recommendations and share our experiences.MethodsActual strategies for ICG application in minimally invasive liver surgery were evaluated and summarized during a review of the literature. Experiences in patients who underwent laparoscopic or robotic-assisted liver surgery with intraoperative ICG staining between 2018 and 2020 from the Magdeburg registry for minimally invasive liver surgery (MD-MILS) were evaluated and the data were analyzed retrospectively.ResultsICG can be used to identify anatomical liver segments by fluorescence angiography via direct or indirect tissue staining. Fluorescence cholangiography visualizes the intra- and extrahepatic bile ducts. Primary and secondary liver tumors can be identified with a sensitivity of 69-100%. For this 0.5 mg/kg body weight ICG must be applicated intravenously 2-14 days prior to surgery. Within the MD-MILS we identified 18 patients which received ICG for intraoperative tumor staining of hepatocellular carcinoma (HCC), cholangiocarcinoma, peritoneal HCC metastases, adenoma, or colorectal liver metastases. The sensitivity for tumor staining was 100%. In 27.8% additional liver tumors were identified by ICG fluorescence. In 39% a false positive signal could be detected. This occurred mainly in cirrhotic livers.ConclusionsICG staining is a simple and useful tool to assess individual hepatic anatomy or to detect tumors during minimally invasive liver surgery. It may enhance surgical precision and improve oncological quality. False-positive detection rates of liver tumors can be reduced by respecting the tumor entity and liver functional impairments.
Project description:Hundreds of scientific documents have reported on the application of indocyanine green (ICG) in hepatobiliary surgery in the past 13 years, but few bibliometric studies have been conducted. This study aimed to identify the situations of authors, countries/regions, institutions, journals, and hot topics in this field. The overall status and prospects of the current research in this field can be elucidated by bibliometric analysis. Publications from 2008 to 2021 were retrieved from the Web of Science (WoS) Core Collection. The search terms included "liver," "hepatic," "gallbladder," "bile duct," "surgery," "hepatectomy," "ICG," "indocyanine green," and related synonyms. The full records of the search results were exported in text, and the cooperation network and hot topics were evaluated and visualized using CiteSpace software. The number of publications increased between 2008 and 2021. A total of 1527 publications were included in the results, and the frequency of citations was 30,742. The largest proportion of the publications emanated from Japan, and the majority of the papers were published by Kokudo. Tian Jie contributed the largest number of papers in China. Research was relatively concentrated among one country/region. The latest hotspots, "preservation" and "resistance", frequently occurred. Cooperation between authors, countries, and institutions needs to be strengthened for high-quality research. Recent studies have focused on hepatectomy, bile duct resection, liver transplantation, and tumors in this field. Future research may focus on other aspects, such as liver preservation and resistance.
Project description:The use of the white-light thoracoscopy is hampered by the low contrast between oncologic margins and surrounding normal parenchyma. As a result, many patients with in situ or micro-infiltrating adenocarcinoma have to undergo lobectomy due to a lack of tactile and visual feedback in the resection of solitary pulmonary nodules. Near-infrared (NIR) guided indocyanine green (ICG) fluorescence imaging technique has been widely investigated due to its unique capability in addressing the current challenges; however, there is no special consensus on the evidence and recommendations for its preoperative and intraoperative applications. This manuscript will describe the development process of a consensus on ICG fluorescence-guided thoracoscopic resection of pulmonary lesions and make recommendations that can be applied in a greater number of centers. Specifically, an expert panel of thoracic surgeons and radiographers was formed. Based on the quality of evidence and strength of recommendations, the consensus was developed in conjunction with the Chinese Guidelines on Video-assisted Thoracoscopy, and the National Comprehensive Cancer Network (NCCN) guidelines on the management of pulmonary lesions. Each of the statements was discussed and agreed upon with a unanimous consensus amongst the panel. A total of 6 consensus statements were developed. Fluorescence-guided thoracoscopy has unique advantages in the visualization of pulmonary nodules, and recognition and resection of the anterior plane of the pulmonary segment. The expert panel agrees that fluorescence-guided thoracoscopic surgery has the potential to become a routine operation for the treatment of pulmonary lesions.