MiRNA/mRNA network topology in hepatitis virus B-related liver cirrhosis reveals miR-20a-5p/340-5p as hubs initiating fibrosis.
Ontology highlight
ABSTRACT: The pathophysiology of hepatitis B-related liver cirrhosis (HBV-LC) remains unclear. This study aimed to explore the disease mechanisms using topological analysis of the miRNA/mRNA network. Paired miRNA/mRNA sequencing was performed with thirty-three peripheral blood mononuclear cell samples (LC, n = 9; chronic hepatitis B, n = 12; normal controls, n = 12) collected from a prospective cohort to identify the miRNA/mRNA network. Topological features and functional implications of the network were analyzed to capture pathophysiologically important miRNAs/mRNAs, whose expression patterns were confirmed in the validation group (LC, n = 15; chronic hepatitis B, n = 15; normal controls, n = 10), and functional potentials initiating fibrogenesis were demonstrated in vitro. The miRNA/mRNA network contained 3121 interactions between 158 differentially expressed (DE) miRNAs and 442 DE-mRNAs. The topological analysis identified a core module containing 99 miRNA/mRNA interactions and two hub nodes (miR-20a-5p/miR-340-5p), which connected to 75 DE-mRNAs. The expression pattern along the disease progression of the core module was found associated with a continuous increase in wound healing, inflammation, and leukocyte migration but an inflection of immune response and lipid metabolic regulation, consistent with the pathophysiology of HBV-LC. MiR-20a-5p/miR-340-5p were found involved in macrophage polarization and hepatic stellate cell (HSC) activation in vitro (THP-1, LX-2 cell lines), and their expression levels were confirmed in the validation group independently. Topological analysis of the miRNA/mRNA network in HBV-LC revealed the association between fibrosis and miR-20a-5p/miR-340-5p involving initiating activations of macrophage and HSC. Further validations should be performed to confirm the HSC/macrophage activations and the interactions between miR-20a-5p/miR-340-5p and their potential targets, which may help to develop non-invasive prognostic markers or intervention targets for HBV-LC.
SUBMITTER: Yao H
PROVIDER: S-EPMC9661777 | biostudies-literature | 2022 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA