Molecular and idiotypic analyses of the antibody response to Cryptococcus neoformans glucuronoxylomannan-protein conjugate vaccine in autoimmune and nonautoimmune mice.
Ontology highlight
ABSTRACT: The antibody response to Cryptococcus neoformans capsular glucuronoxylomannan (GXM) in BALB/c mice frequently expresses the 2H1 idiotype (Id) and is restricted in variable gene usage. This study examined the immunogenicity of GXM-protein conjugates, V (variable)-region usage, and 2H1 Id expression in seven mouse strains: BALB/c, C57BL/6, A/J, C3H, NZB, NZW, and (NZB x NZW)F(1) (NZB/W). All mouse strains responded to vaccination with GXM conjugated to tetanus toxoid (TT), the relative magnitude of the antibody response being BALB/c approximately C3H > C57BL/6 approximately NZB approximately NZW approximately NZB/W > A/J. Analysis of serum antibody responses to GXM with polyclonal and monoclonal antibodies to the 2H1 Id revealed significant inter- and intrastrain differences in idiotype expression. Thirteen monoclonal antibodies (MAbs) (two immunoglobulin M [IgM], three IgG3, one IgG1, three IgG2a, two IgG2b, and two IgA) to GXM were generated from one NZB/W mouse and one C3H/He mouse. The MAbs from the NZB/W mouse were all 2H1 Id positive (Id(+)) and structurally similar to those previously generated in BALB/c mice, including the usage of a V(H) from the 7183 family and Vkappa5.1. Administration of both 2H1 Id(+) and Id(-) MAbs from NZB/W and C3H/H3 mice prolonged survival in a mouse model of cryptococcosis. Our results demonstrate (i) that V-region restriction as indicated by the 2H1 Id is a feature of both primary and secondary responses of several mouse strains; and (ii) that there is conservation of V-region usage and length of the third complementarity-determining region in antibodies from three mouse strains. The results suggest that V-region restriction is a result of antibody structural requirements necessary for binding an immunodominant antigen in GXM.
SUBMITTER: Nussbaum G
PROVIDER: S-EPMC96766 | biostudies-literature | 1999 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA