Unknown

Dataset Information

0

Stabilizing Halogen-Bonded Complex between Metallic Anion and Iodide.


ABSTRACT: Halogen bonds (XBs) between metal anions and halides have seldom been reported because metal anions are reactive for XB donors. The pyramidal-shaped Mn(CO)5- anion is a candidate metallic XB acceptor with a ligand-protected metal core that maintains the negative charge and an open site to accept XB donors. Herein, Mn(CO)5- is prepared by electrospray ionization, and its reaction with CH3I in gas phase is studied using mass spectrometry and density functional theory (DFT) calculation. The product observed experimentally at m/z = 337 is assigned as [IMn(CO)4(OCCH3)]-, which is formed by successive nucleophilic substitution and reductive elimination, instead of the halogen-bonded complex (XC) CH3-I···Mn(CO)5-, because the I···Mn interaction is weak within XC and it could be a transient species. Inspiringly, DFT calculations predict that replacing CH3I with CF3I can strengthen the halogen bonding within the XC due to the electro-withdrawing ability of F. More importantly, in so doing, the nucleophilic substitution barrier can be raised significantly, ~30 kcal/mol, thus leaving the system trapping within the XC region. In brief, the combination of a passivating metal core and the introduction of an electro-withdrawing group to the halide can enable strong halogen bonding between metallic anion and iodide.

SUBMITTER: Ying F 

PROVIDER: S-EPMC9692347 | biostudies-literature | 2022 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

Stabilizing Halogen-Bonded Complex between Metallic Anion and Iodide.

Ying Fei F   Yuan Xu X   Zhang Xinxing X   Xie Jing J  

Molecules (Basel, Switzerland) 20221121 22


Halogen bonds (XBs) between metal anions and halides have seldom been reported because metal anions are reactive for XB donors. The pyramidal-shaped Mn(CO)<sub>5</sub><sup>-</sup> anion is a candidate metallic XB acceptor with a ligand-protected metal core that maintains the negative charge and an open site to accept XB donors. Herein, Mn(CO)<sub>5</sub><sup>-</sup> is prepared by electrospray ionization, and its reaction with CH<sub>3</sub>I in gas phase is studied using mass spectrometry and d  ...[more]

Similar Datasets

| S-EPMC8272125 | biostudies-literature
| S-EPMC8654056 | biostudies-literature
| S-EPMC9723116 | biostudies-literature
| S-EPMC8508742 | biostudies-literature
| S-EPMC8861932 | biostudies-literature
| S-EPMC6930488 | biostudies-literature
| S-EPMC7555031 | biostudies-literature
| S-EPMC7287722 | biostudies-literature
| S-EPMC9062880 | biostudies-literature