Unknown

Dataset Information

0

In situ electrochemical synthesis of Pd aerogels as highly efficient anodic electrocatalysts for alkaline fuel cells.


ABSTRACT: Improving the utilization of noble metals is extremely urgent for fuel cell electrocatalysis, while three-dimensional hierarchical noble metal aerogels with abundant sites and channels are proposed to reinforce their electrocatalytic performances and decrease their amounts. Herein, novel Pd aerogels with tunable surface chemical states were prepared through a facile in situ electrochemical activation, starting with PdO x aerogels by the hydrolysis method. The hierarchical porous Pd aerogels showed unprecedented high activity towards the electrocatalytic oxidation of fuels including methanol (2.99 A mgPd-1), ethanol (8.81 A mgPd-1), and others in alkali, outperforming commercial catalysts (7.12- and 13.66-fold, corresponding to methanol and ethanol). Theoretical investigation unveiled the hybrid surface states with metallic and oxidized Pd species in Pd aerogels to regulate the adsorption of intermediates and facilitate the synergistic oxidation of adsorbed *CO, resulting in enhanced activity with the MOR as the model. Therefore, efficient Pd aerogels through the in situ electrochemical activation of PdO x aerogels were proposed and showed great potential for fuel cell anodic electrocatalysis.

SUBMITTER: Wang C 

PROVIDER: S-EPMC9710217 | biostudies-literature | 2022 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications

<i>In situ</i> electrochemical synthesis of Pd aerogels as highly efficient anodic electrocatalysts for alkaline fuel cells.

Wang Chen C   Gao Wei W   Wan Xinhao X   Yao Bin B   Mu Wenjing W   Gao Jie J   Fu Qiangang Q   Wen Dan D  

Chemical science 20221111 46


Improving the utilization of noble metals is extremely urgent for fuel cell electrocatalysis, while three-dimensional hierarchical noble metal aerogels with abundant sites and channels are proposed to reinforce their electrocatalytic performances and decrease their amounts. Herein, novel Pd aerogels with tunable surface chemical states were prepared through a facile <i>in situ</i> electrochemical activation, starting with PdO <sub><i>x</i></sub> aerogels by the hydrolysis method. The hierarchica  ...[more]

Similar Datasets

| S-EPMC8809680 | biostudies-literature
| S-EPMC6900538 | biostudies-literature
| S-EPMC8486879 | biostudies-literature
| S-EPMC7645198 | biostudies-literature
| S-EPMC9935986 | biostudies-literature
| S-EPMC6645027 | biostudies-literature
| S-EPMC3028721 | biostudies-literature
| S-EPMC9101072 | biostudies-literature
| S-EPMC3824170 | biostudies-other