Unknown

Dataset Information

0

Lactate dehydrogenases promote glioblastoma growth and invasion via a metabolic symbiosis.


ABSTRACT: Lactate is a central metabolite in brain physiology but also contributes to tumor development. Glioblastoma (GB) is the most common and malignant primary brain tumor in adults, recognized by angiogenic and invasive growth, in addition to its altered metabolism. We show herein that lactate fuels GB anaplerosis by replenishing the tricarboxylic acid (TCA) cycle in absence of glucose. Lactate dehydrogenases (LDHA and LDHB), which we found spatially expressed in GB tissues, catalyze the interconversion of pyruvate and lactate. However, ablation of both LDH isoforms, but not only one, led to a reduction in tumor growth and an increase in mouse survival. Comparative transcriptomics and metabolomics revealed metabolic rewiring involving high oxidative phosphorylation (OXPHOS) in the LDHA/B KO group which sensitized tumors to cranial irradiation, thus improving mouse survival. When mice were treated with the antiepileptic drug stiripentol, which targets LDH activity, tumor growth decreased. Our findings unveil the complex metabolic network in which both LDHA and LDHB are integrated and show that the combined inhibition of LDHA and LDHB strongly sensitizes GB to therapy.

SUBMITTER: Guyon J 

PROVIDER: S-EPMC9728051 | biostudies-literature | 2022 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Lactate dehydrogenases promote glioblastoma growth and invasion via a metabolic symbiosis.

Guyon Joris J   Fernandez-Moncada Ignacio I   Larrieu Claire M CM   Bouchez Cyrielle L CL   Pagano Zottola Antonio C AC   Galvis Johanna J   Chouleur Tiffanie T   Burban Audrey A   Joseph Kevin K   Ravi Vidhya M VM   Espedal Heidi H   Røsland Gro Vatne GV   Daher Boutaina B   Barre Aurélien A   Dartigues Benjamin B   Karkar Slim S   Rudewicz Justine J   Romero-Garmendia Irati I   Klink Barbara B   Grützmann Konrad K   Derieppe Marie-Alix MA   Molinié Thibaut T   Obad Nina N   Léon Céline C   Seano Giorgio G   Miletic Hrvoje H   Heiland Dieter Henrik DH   Marsicano Giovanni G   Nikolski Macha M   Bjerkvig Rolf R   Bikfalvi Andreas A   Daubon Thomas T  

EMBO molecular medicine 20221024 12


Lactate is a central metabolite in brain physiology but also contributes to tumor development. Glioblastoma (GB) is the most common and malignant primary brain tumor in adults, recognized by angiogenic and invasive growth, in addition to its altered metabolism. We show herein that lactate fuels GB anaplerosis by replenishing the tricarboxylic acid (TCA) cycle in absence of glucose. Lactate dehydrogenases (LDHA and LDHB), which we found spatially expressed in GB tissues, catalyze the interconvers  ...[more]

Similar Datasets

| S-SCDT-10_15252-EMMM_202115343 | biostudies-other
| S-EPMC10914854 | biostudies-literature
| S-EPMC9097945 | biostudies-literature
| S-EPMC8139157 | biostudies-literature
| S-EPMC6059807 | biostudies-literature
| S-EPMC6721480 | biostudies-literature
| S-EPMC8816813 | biostudies-literature
| S-EPMC4679558 | biostudies-literature
| S-EPMC2570690 | biostudies-literature
| S-EPMC6344623 | biostudies-literature