Expression of Concern: Characterization of a Subunit of the Outer Dynein Arm Docking Complex Necessary for Correct Flagellar Assembly in Leishmania donovani.
Expression of Concern: Characterization of a Subunit of the Outer Dynein Arm Docking Complex Necessary for Correct Flagellar Assembly in Leishmania donovani.
Project description:BackgroundIn order to proceed through their life cycle, Leishmania parasites switch between sandflies and mammals. The flagellated promastigote cells transmitted by the insect vector are phagocytized by macrophages within the mammalian host and convert into the amastigote stage, which possesses a rudimentary flagellum only. During an earlier proteomic study of the stage differentiation of the parasite we identified a component of the outer dynein arm docking complex, a structure of the flagellar axoneme. The 70 kDa subunit of the outer dynein arm docking complex consists of three subunits altogether and is essential for the assembly of the outer dynein arm onto the doublet microtubule of the flagella. According to the nomenclature of the well-studied Chlamydomonas reinhardtii complex we named the Leishmania protein LdDC2.Methodology/principal findingsThis study features a characterization of the protein over the life cycle of the parasite. It is synthesized exclusively in the promastigote stage and localizes to the flagellum. Gene replacement mutants of lddc2 show reduced growth rates and diminished flagellar length. Additionally, the normally spindle-shaped promastigote parasites reveal a more spherical cell shape giving them an amastigote-like appearance. The mutants lose their motility and wiggle in place. Ultrastructural analyses reveal that the outer dynein arm is missing. Furthermore, expression of the amastigote-specific A2 gene family was detected in the deletion mutants in the absence of a stage conversion stimulus. In vitro infectivity is slightly increased in the mutant cell line compared to wild-type Leishmania donovani parasites.Conclusions/significanceOur results indicate that the correct assembly of the flagellum has a great influence on the investigated characteristics of Leishmania parasites. The lack of a single flagellar protein causes an aberrant morphology, impaired growth and altered infectiousness of the parasite.
Project description:To learn more about how dyneins are targeted to specific sites in the flagellum, we have investigated a factor necessary for binding of outer arm dynein to the axonemal microtubules of Chlamydomonas. This factor, termed the outer dynein arm-docking complex (ODA-DC), previously was shown to be missing from axonemes of the outer dynein armless mutants oda1 and oda3. We have now partially purified the ODA-DC, determined that it contains equimolar amounts of M(r) approximately 105,000 and approximately 70,000 proteins plus a third protein of M(r) approximately 25,000, and found that it is associated with the isolated outer arm in a 1:1 molar ratio. We have cloned a full-length cDNA encoding the M(r) approximately 70,000 protein; the sequence predicts a 62.5-kDa protein with potential homologs in higher ciliated organisms, including humans. Sequencing of corresponding cDNA from strain oda1 revealed it has a mutation resulting in a stop codon just downstream of the initiator ATG; thus, it is unable to make the full-length M(r) approximately 70,000 protein. These results demonstrate that the ODA1 gene encodes the M(r) approximately 70,000 protein, and that the protein is essential for assembly of the ODA-DC and the outer dynein arm onto the doublet microtubule.
Project description:Outer arm dynein (OAD) is bound to specific loci on outer-doublet-microtubules by interactions at two sites: via intermediate chain 1 (IC1) and the outer dynein arm docking complex (ODA-DC). Studies using Chlamydomonas mutants have suggested that the individual sites have rather weak affinities for microtubules, and therefore strong OAD attachment to microtubules is achieved by their cooperation. To test this idea, we examined interactions between IC1, IC2 (another intermediate chain) and ODA-DC using recombinant proteins. Recombinant IC1 and IC2 were found to form a 1:1 complex, and this complex associated with ODA-DC in vitro. Binding of IC1 to mutant axonemes revealed that there are specific binding sites for IC1. From these data, we propose a novel model of OAD-outer doublet association.
Project description:A system distinct from the central pair-radial spoke complex was proposed to control outer arm dynein function in response to alterations in the mechanical state of the flagellum. In this study, we examine the role of a Chlamydomonas reinhardtii outer arm dynein light chain that associates with the motor domain of the gamma heavy chain (HC). We demonstrate that expression of mutant forms of LC1 yield dominant-negative effects on swimming velocity, as the flagella continually beat out of phase and stall near or at the power/recovery stroke switchpoint. Furthermore, we observed that LC1 interacts directly with tubulin in a nucleotide-independent manner and tethers this motor unit to the A-tubule of the outer doublet microtubules within the axoneme. Therefore, this dynein HC is attached to the same microtubule by two sites: via both the N-terminal region and the motor domain. We propose that this gamma HC-LC1-microtubule ternary complex functions as a conformational switch to control outer arm activity.
Project description:The outer dynein arm-docking complex (ODA-DC), which was first identified in the green alga Chlamydomonas reinhardtii, is a protein complex that mediates the binding of axonemal dynein and doublet microtubules. To gain a better understanding of the evolutionary conservation and functional diversity of the ODA-DC, we knocked down a homolog of DC2, a major subunit of the ODA-DC, in the planarian Schmidtea mediterranea. Planaria are carnivorous flatworms that move by beating cilia on their ventral surface against a secreted mucus layer. These organisms have recently been used for cilia research because knockdown of flatworm genes by RNA interference (RNAi) is readily achieved through feeding with double-stranded RNA (dsRNA). Lack of DC2 in S. mediterranea caused several defects in cilia, including low beat frequency, decreased ciliary density, and a reduction in ciliary length. The loss of DC2 function C. reinhardtii mutant oda1 shows slow jerky swimming, but has two flagella of almost normal length. These data suggest that the function of a DC2 homolog in S. mediterranea cilia may be somewhat different from DC2 in C. reinhardtii flagella.
Project description:The Chlamydomonas reinhardtii oda8 mutation blocks assembly of flagellar outer dynein arms (ODAs), and interacts genetically with ODA5 and ODA10, which encode axonemal proteins thought to aid dynein binding onto axonemal docking sites. We positionally cloned ODA8 and identified the gene product as the algal homolog of vertebrate LRRC56. Its flagellar localization depends on ODA5 and ODA10, consistent with genetic interaction studies, but phylogenomics suggests that LRRC56 homologs play a role in intraflagellar transport (IFT)-dependent assembly of outer row dynein arms, not axonemal docking. ODA8 distribution between cytoplasm and flagella is similar to that of IFT proteins and about half of flagellar ODA8 is in the soluble matrix fraction. Dynein extracted in vitro from wild type axonemes will rebind efficiently to oda8 mutant axonemes, without re-binding of ODA8, further supporting a role in dynein assembly or transport, not axonemal binding. Assays comparing preassembled ODA complexes from the cytoplasm of wild type and mutant strains show that dynein in oda8 mutant cytoplasm has not properly preassembled and cannot bind normally onto oda axonemes. We conclude that ODA8 plays an important role in formation and transport of mature dynein complexes during flagellar assembly.
Project description:We have used an insertional mutagenesis/ gene tagging technique to generate new Chlamydomonas reinhardtii mutants that are defective in assembly of the uter ynein rm. Among 39 insertional oda mutants characterized, two are alleles of the previously uncloned ODA3 gene, one is an allele of the uncloned ODA10 gene, and one represents a novel ODA gene (termed ODA12). ODA3 is of particular interest because it is essential for assembly of both the outer dynein arm and the outer dynein arm docking complex (ODA-DC) onto flagellar doublet microtubules (Takada, S., and R. Kamiya. 1994. J. Cell Biol. 126:737- 745). Beginning with the inserted DNA as a tag, the ODA3 gene and a full-length cDNA were cloned. The cloned gene rescues the phenotype of oda3 mutants. The cDNA sequence predicts a novel 83. 4-kD protein with extensive coiled-coil domains. The ODA-DC contains three polypeptides; direct amino acid sequencing indicates that the largest of these polypeptides corresponds to ODA3. This protein is likely to have an important role in the precise positioning of the outer dynein arms on the flagellar axoneme.
Project description:Outer-arm dynein is the main engine providing the motive force in cilia. Using three-dimensional tracking microscopy, we found that contrary to previous reports Tetrahymena ciliary three-headed outer-arm dynein (αβγ) as well as proteolytically generated two-headed (βγ) and one-headed (α) subparticles showed clockwise rotation of each sliding microtubule around its longitudinal axis in microtubule corkscrewing assays. By measuring the rotational pitch as a function of ATP concentration, we also found that the microtubule corkscrewing pitch is independent of ATP concentration, except at low ATP concentrations where the pitch generated by both three-headed αβγ and one-headed α exhibited significantly longer pitch. In contrast, the pitch driven by two-headed βγ did not display this sensitivity. In the assays on lawns containing mixtures of α and βγ at various ratios, the corkscrewing pitch increased dramatically in a nonlinear fashion as the ratio of α in the mixture increased. Even small proportions of α-subparticle could significantly increase the corkscrewing pitch of the mixture. Our data show that torque generation does not require the three-headed outer-arm dynein (αβγ) but is an intrinsic property of the subparticles of axonemal dyneins and also suggest that each subparticle may have distinct mechanical properties.
Project description:A diverse family of cytoskeletal dynein motors powers various cellular transport systems, including axonemal dyneins generating the force for ciliary and flagellar beating essential to movement of extracellular fluids and of cells through fluid. Multisubunit outer dynein arm (ODA) motor complexes, produced and preassembled in the cytosol, are transported to the ciliary or flagellar compartment and anchored into the axonemal microtubular scaffold via the ODA docking complex (ODA-DC) system. In humans, defects in ODA assembly are the major cause of primary ciliary dyskinesia (PCD), an inherited disorder of ciliary and flagellar dysmotility characterized by chronic upper and lower respiratory infections and defects in laterality. Here, by combined high-throughput mapping and sequencing, we identified CCDC151 loss-of-function mutations in five affected individuals from three independent families whose cilia showed a complete loss of ODAs and severely impaired ciliary beating. Consistent with the laterality defects observed in these individuals, we found Ccdc151 expressed in vertebrate left-right organizers. Homozygous zebrafish ccdc151(ts272a) and mouse Ccdc151(Snbl) mutants display a spectrum of situs defects associated with complex heart defects. We demonstrate that CCDC151 encodes an axonemal coiled coil protein, mutations in which abolish assembly of CCDC151 into respiratory cilia and cause a failure in axonemal assembly of the ODA component DNAH5 and the ODA-DC-associated components CCDC114 and ARMC4. CCDC151-deficient zebrafish, planaria, and mice also display ciliary dysmotility accompanied by ODA loss. Furthermore, CCDC151 coimmunoprecipitates CCDC114 and thus appears to be a highly evolutionarily conserved ODA-DC-related protein involved in mediating assembly of both ODAs and their axonemal docking machinery onto ciliary microtubules.
Project description:Defects in motile cilia and sperm flagella cause primary ciliary dyskinesia (PCD), characterized by chronic airway disease, infertility, and left-right laterality disturbances, usually as a result of loss of the outer dynein arms (ODAs) that power cilia/flagella beating. Here, we identify loss-of-function mutations in CCDC114 causing PCD with laterality malformations involving complex heart defects. CCDC114 is homologous to DCC2, an ODA microtubule-docking complex component of the biflagellate alga Chlamydomonas. We show that CCDC114 localizes along the entire length of human cilia and that its deficiency causes a complete absence of ciliary ODAs, resulting in immotile cilia. Thus, CCDC114 is an essential ciliary protein required for microtubular attachment of ODAs in the axoneme. Fertility is apparently not greatly affected by CCDC114 deficiency, and qPCR shows that this may explained by low transcript expression in testis compared to ciliated respiratory epithelium. One CCDC114 mutation, c.742G>A, dating back to at least the 1400s, presents an important diagnostic and therapeutic target in the isolated Dutch Volendam population.