Project description:Despite more than two decades of extensive research focusing on nonalcoholic fatty liver disease (NAFLD), no approved therapy for steatohepatitis-the severe histological form of the disease-presently exists. More importantly, new drugs and small molecules with diverse molecular targets on the pathways of hepatocyte injury, inflammation, and fibrosis cannot achieve the primary efficacy endpoints. Precision medicine can potentially overcome this issue, as it is founded on extensive knowledge of the druggable genome/proteome. Hence, this review summarizes significant trends and developments in precision medicine with a particular focus on new potential therapeutic discoveries modeled via systems biology approaches. In addition, we computed and simulated the potential utility of the NAFLD polygenic risk score, which could be conceptually very advantageous not only for early disease detection but also for implementing actionable measures. Incomplete knowledge of the druggable NAFLD genome severely impedes the drug discovery process and limits the likelihood of identifying robust and safe drug candidates. Thus, we close this article with some insights into emerging disciplines, such as chemical genetics, that may accelerate accurate identification of the druggable NAFLD genome/proteome.
Project description:The plasma profile of subjects with nonalcoholic fatty liver disease (NAFLD), steatosis, and steatohepatitis (NASH) was examined using an untargeted global metabolomic analysis to identify specific disease-related patterns and to identify potential noninvasive biomarkers. Plasma samples were obtained after an overnight fast from histologically confirmed nondiabetic subjects with hepatic steatosis (n = 11) or NASH (n = 24) and were compared with healthy, age- and sex-matched controls (n = 25). Subjects with NAFLD were obese, were insulin resistant, and had higher plasma concentrations of homocysteine and total cysteine and lower plasma concentrations of total glutathione. Metabolomic analysis showed markedly higher levels of glycocholate, taurocholate, and glycochenodeoxycholate in subjects with NAFLD. Plasma concentrations of long-chain fatty acids were lower and concentrations of free carnitine, butyrylcarnitine, and methylbutyrylcarnitine were higher in NASH. Several glutamyl dipeptides were higher whereas cysteine-glutathione levels were lower in NASH and steatosis. Other changes included higher branched-chain amino acids, phosphocholine, carbohydrates (glucose, mannose), lactate, pyruvate, and several unknown metabolites. Random forest analysis and recursive partitioning of the metabolomic data could separate healthy subjects from NAFLD with an error rate of approximately 8% and separate NASH from healthy controls with an error rate of 4%. Hepatic steatosis and steatohepatitis could not be separated using the metabolomic profile. Plasma metabolomic analysis revealed marked changes in bile salts and in biochemicals related to glutathione in subjects with NAFLD. Statistical analysis identified a panel of biomarkers that could effectively separate healthy controls from NAFLD and healthy controls from NASH. These biomarkers can potentially be used to follow response to therapeutic interventions.
Project description:Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease, and is related to fatal and non-fatal liver, metabolic, and cardiovascular complications. Its non-invasive diagnosis and effective treatment remain an unmet clinical need. NAFLD is a heterogeneous disease that is most commonly present in the context of metabolic syndrome and obesity, but not uncommonly, may also be present without metabolic abnormalities and in subjects with normal body mass index. Therefore, a more specific pathophysiology-based subcategorization of fatty liver disease (FLD) is needed to better understand, diagnose, and treat patients with FLD. A precision medicine approach for FLD is expected to improve patient care, decrease long-term disease outcomes, and develop better-targeted, more effective treatments. We present herein a precision medicine approach for FLD based on our recently proposed subcategorization, which includes the metabolic-associated FLD (MAFLD) (i.e., obesity-associated FLD (OAFLD), sarcopenia-associated FLD (SAFLD, and lipodystrophy-associated FLD (LAFLD)), genetics-associated FLD (GAFLD), FLD of multiple/unknown causes (XAFLD), and combined causes of FLD (CAFLD) as well as advanced stage fibrotic FLD (FAFLD) and end-stage FLD (ESFLD) subcategories. These and other related advances, as a whole, are expected to enable not only improved patient care, quality of life, and long-term disease outcomes, but also a considerable reduction in healthcare system costs associated with FLD, along with more options for better-targeted, more effective treatments in the near future.
Project description:The fungal microbiota plays an important role in the pathogenesis of alcohol-associated liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). In this study, we aimed to compare changes of the fecal fungal microbiota between patients with ALD and NAFLD and to elucidate patterns in different disease stages between the two conditions. We analyzed fungal internal transcribed spacer 2 (ITS2) sequencing using fecal samples from a cohort of 48 patients with ALD, 78 patients with NAFLD, and 34 controls. The fungal microbiota differed significantly between ALD and NAFLD. The genera Saccharomyces, Kluyveromyces, Scopulariopsis, and the species Candida albicans (C. albicans), Malassezia restricta (M. restricta), Scopulariopsis cordiae (S. cordiae) were significantly increased in patients with ALD, whereas the genera Kazachstania and Mucor were significantly increased in the NAFLD cohort. We identified the fungal signature consisting of Scopulariopsis, Kluyveromyces, M. restricta, and Mucor to have the highest discriminative ability to detect ALD vs NAFLD with an area under the curve (AUC) of 0.93. When stratifying the ALD and NAFLD cohorts by fibrosis severity, the fungal signature with the highest AUC of 0.92 to distinguish ALD F0-F1 vs NAFLD F0-F1 comprised Scopulariopsis, Kluyveromyces, Mucor, M. restricta, and Kazachstania. For more advanced fibrosis stages (F2-F4), the fungal signature composed of Scopulariopsis, Kluyveromyces, Mucor, and M. restricta achieved the highest AUC of 0.99 to differentiate ALD from NAFLD. This is the first study to identify a fungal signature to differentiate two metabolic fatty liver diseases from each other, specifically ALD from NAFLD. This might have clinical utility in unclear cases and might hence help shape treatment approaches. However, larger studies are required to validate this fungal signature in other populations of ALD and NAFLD.
Project description:Nonalcoholic fatty liver disease (NAFLD), as a multisystemic disease, is the most prevalent chronic liver disease characterized by extremely complex pathogenic mechanisms and multifactorial etiology, which often develops as a consequence of obesity, metabolic syndrome. Pathophysiological mechanisms involved in the development of NAFLD include diet, obesity, insulin resistance (IR), genetic and epigenetic determinants, intestinal dysbiosis, oxidative/nitrosative stress, autophagy dysregulation, hepatic inflammation, gut-liver axis, gut microbes, impaired mitochondrial metabolism and regulation of hepatic lipid metabolism. Some of the new drugs for the treatment of NAFLD are introduced here. All of them achieve therapeutic objectives by interfering with certain pathophysiological pathways of NAFLD, including fibroblast growth factors (FGF) analogues, peroxisome proliferator-activated receptors (PPARs) agonists, glucagon-like peptide-1 (GLP-1) agonists, G protein-coupled receptors (GPCRs), sodium-glucose cotransporter-2 inhibitors (SGLT-2i), farnesoid X receptor (FXR), fatty acid synthase inhibitor (FASNi), antioxidants, etc. This review describes some pathophysiological mechanisms of NAFLD and established targets and drugs.
Project description:Nonalcoholic fatty liver disease (NAFLD) and its more severe form, nonalcoholic steatohepatitis (NASH), can promote the development of cirrhosis, hepatocellular carcinoma, cardiovascular disease, and type 2 diabetes. Similarly, type 2 diabetes confers the greatest risk for the development of NASH, especially when associated with obesity. Although lifestyle changes are critical to success, early implementation of pharmacological treatments for obesity and type 2 diabetes are essential to treat NASH and avoid disease progression. This article reviews current guidance regarding the use of pharmacological agents such as pioglitazone, glucagon-like peptide 1 receptor agonists, and sodium-glucose cotransporter 2 inhibitors in the setting of NAFLD and NASH. It also reviews the latest information on new drugs currently being investigated for the treatment of NASH.
Project description:Background & aimsAlterations in the gut microbiome have been associated with the severity of nonalcoholic fatty liver disease (NAFLD). Previous studies focused exclusively on the bacteria in the microbiome; we investigated changes in the viral microbiome (virome) in patients with NAFLD.MethodsIn a prospective, cross-sectional, observational study, we extracted RNA and DNA virus-like particles from fecal samples from 73 patients with NAFLD: 29 patients had an NAFLD Activity Score (NAS) of 0-4, 44 patients had an NAS of 5-8 or liver cirrhosis (LCI), 37 patients had F0-F1 fibrosis, and 36 patients had F2-F4 fibrosis. As controls, 9 individuals without liver disease and 13 patients with mild primary biliary cholangitis were included in the analysis. We performed shotgun metagenomic sequencing of virus-like particles.ResultsPatients with NAFLD and NAS 5-8/LCI had a significant decrease in intestinal viral diversity compared with patients with NAFLD and NAS 0-4 or control individuals. The presence of more advanced NAFLD was associated with a significant reduction in the proportion of bacteriophages compared with other intestinal viruses. Using multivariate logistic regression analysis with leave-1-out cross validation, we developed a model, including a viral diversity index and simple clinical variables, that identified patients with NAS 5-8/LCI with an area under the curve of 0.95 (95% confidence interval, 0.91-0.99) and F2-F4 fibrosis with an area under the curve of 0.88 (95% confidence interval, 0.80-0.95). Addition of data on viral diversity significantly improved multivariate models, including those based on only clinical parameters or bacterial diversity.ConclusionsIn a study of fecal viromes from patients with NAFLD and control individuals, we associated histologic markers of NAFLD severity with significant decreases in viral diversity and proportion of bacteriophages. We developed a model based on fecal viral diversity and clinical data that identifies patients with severe NAFLD and fibrosis more accurately than models based only on clinical or bacterial data.
Project description:Nonalcoholic fatty liver disease (NAFLD) in non-obese patients remains a clinical condition with unclear etiology and pathogenesis. Using a metabolomics approach in a mouse model that recapitulates almost all the characteristic features of non-obese NAFLD, we aimed to advance mechanistic understanding of this disorder. Mice fed high fat, high cholesterol, cholate (HFHCC) diet for three weeks consistently developed hepatic pathology similar to NAFLD and nonalcoholic steatohepatitis (NASH) without changes to body weight or fat pad weights. Gas- and liquid chromatography/mass spectrometry-based profiling of lipidomic and primary metabolism changes in the liver and plasma revealed that systemic mechanisms leading to steatosis and hepatitis in this non-obese NAFLD model were driven by a combination of effects directed by elevated free cholesterol, cholesterol esters and cholic acid, and associated changes to metabolism of sphingomyelins and phosphatidylcholines. These results demonstrate that mechanisms underlying cholesterol-induced non-obese NAFLD are distinct from NAFLD occurring as a consequence of metabolic syndrome. In addition, this investigation provides one of the first metabolite reference profiles for interpreting effects of dietary and hepatic cholesterol in human non-obese NAFLD/NASH patients.