A protective glycosylphosphatidylinositol-anchored membrane protein of Plasmodium yoelii trophozoites and merozoites contains two epidermal growth factor-like domains.
Ontology highlight
ABSTRACT: Using sera from mice immunized and protected against Plasmodium yoelii malaria, we identified a novel blood-stage antigen gene, pypag-2. The 2.1-kb pypag-2 cDNA contains a single open reading frame that encodes a 409-amino-acid protein with a predicted molecular mass of 46.8 kDa. Unlike many characterized plasmodial antigens, blocks of tandemly repeated amino acids are lacking in the pypAg-2 protein sequence. Recombinant pypAg-2, comprising the full-length protein minus the predicted N-terminal signal and C-terminal anchor sequences, was produced and used to raise a high-titer polyclonal rabbit antiserum. This antiserum was used to identify and characterize the native protein through immunoblotting, immunoprecipitation and immunofluorescence assays. Consistent with the presence of a glycosylphosphatidylinositol anchor, pypAg-2 fractionated with the detergent phase of Triton X-114-solubilized proteins and could be metabolically labeled with [(3)H]palmitic acid. By immunofluorescence, pypAg-2 expression was localized to both the trophozoite and merozoite membranes. Similar to Plasmodium falciparum merozoite surface protein 1, pypAg-2 contains two C-terminal epidermal growth factor (EGF)-like domains. Most importantly, immunization with recombinant pypAg-2 protected mice against lethal P. yoelii malaria. Thus, pypAg-2 is a target of protective immune responses and represents a novel addition to the family of merozoite surface proteins that contain one or more EGF-like domains.
SUBMITTER: Burns JM
PROVIDER: S-EPMC97698 | biostudies-literature | 2000 Nov
REPOSITORIES: biostudies-literature
ACCESS DATA