Ontology highlight
ABSTRACT: Background
Despite a global prevalence of photosynthetic organisms in the ocean's mesophotic zone (30-200+ m depth), the mechanisms that enable photosynthesis to proceed in this low light environment are poorly defined. Red coralline algae are the deepest known marine benthic macroalgae - here we investigated the light harvesting mechanism and mesophotic acclimatory response of the red coralline alga Lithothamnion glaciale.Results
Following initial absorption by phycourobilin and phycoerythrobilin in phycoerythrin, energy was transferred from the phycobilisome to photosystems I and II within 120 ps. This enabled delivery of 94% of excitations to reaction centres. Low light intensity, and to a lesser extent a mesophotic spectrum, caused significant acclimatory change in chromophores and biliproteins, including a 10% increase in phycoerythrin light harvesting capacity and a 20% reduction in chlorophyll-a concentration and photon requirements for photosystems I and II. The rate of energy transfer remained consistent across experimental treatments, indicating an acclimatory response that maintains energy transfer.Conclusions
Our results demonstrate that responsive light harvesting by phycobilisomes and photosystem functional acclimation are key to red algal success in the mesophotic zone.
SUBMITTER: Voerman SE
PROVIDER: S-EPMC9794408 | biostudies-literature | 2022 Dec
REPOSITORIES: biostudies-literature
Voerman Sofie E SE Ruseckas Arvydas A Turnbull Graham A GA Samuel Ifor D W IDW Burdett Heidi L HL
BMC biology 20221227 1
<h4>Background</h4>Despite a global prevalence of photosynthetic organisms in the ocean's mesophotic zone (30-200+ m depth), the mechanisms that enable photosynthesis to proceed in this low light environment are poorly defined. Red coralline algae are the deepest known marine benthic macroalgae - here we investigated the light harvesting mechanism and mesophotic acclimatory response of the red coralline alga Lithothamnion glaciale.<h4>Results</h4>Following initial absorption by phycourobilin and ...[more]