Engineered geranyl diphosphate methyltransferase produces 2-methyl-dimethylallyl diphosphate as a noncanonical C6 unit for terpenoid biosynthesis.
Ontology highlight
ABSTRACT: Terpenoids constitute the largest class of natural products with complex structures, essential functions, and versatile applications. Creation of new building blocks beyond the conventional five-carbon (C5) units, dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate, expands significantly the chemical space of terpenoids. Structure-guided engineering of an S-adenosylmethionine-dependent geranyl diphosphate (GPP) C2-methyltransferase from Streptomyces coelicolor yielded variants converting DMAPP to a new C6 unit, 2-methyl-DMAPP. Mutation of the Gly residue at the position 202 resulted in a smaller substrate-binding pocket to fit DMAPP instead of its native substrate GPP. Replacement of Phe residue at the position 222 with a Tyr residue contributed to DMAPP binding via hydrogen bond. Furthermore, using Escherichia coli as the chassis, we demonstrated that 2-methyl-DMAPP was accepted as a start unit to generate noncanonical trans- and cis-prenyl diphosphates (C5n+1) and terpenoids. This work provides insights into substrate recognition of prenyl diphosphate methyltransferases, and strategies to diversify terpenoids by expanding the building block portfolio.
SUBMITTER: Xia CY
PROVIDER: S-EPMC9800250 | biostudies-literature | 2023 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA