Ontology highlight
ABSTRACT: Aims/introduction
In the development of type 1 diabetes, metabolites are significantly altered and might be involved in β-cell destruction and protection. We aimed to identify new metabolic markers of β-cell destruction in type 1 diabetes patients.Materials and methods
A total of 33 participants were recruited for this cross-sectional observational study: 23 with type 1 diabetes, seven with type 2 diabetes and three healthy controls. Those with type 1 diabetes were further subdivided into three groups: new-onset, microsecretors and complete lack of endogenous insulin in type 1 diabetes.Results
Metabolomic analysis identified a total of 737 peaks, and partial least square analysis was successful in discriminating between the three groups of type 1 diabetes. Among the factor loadings discriminating type 1 diabetes, 3-phenylpropionic acid (r = 0.80, P = 4.7E-6 ) and hypotaurine (r = -0.484, P = 1.9E-2 ) strongly contributed to identifying new-onset type 1 diabetes, and 5-methylcytosine to identifying complete-lack type 1 diabetes (r = 0.586, P = 6.5E-3 ). Reporter operating characteristics analysis, including all type 1 diabetes, type 2 diabetes and healthy controls, showed that high 3-phenylpropionic acid (Pc <0.0001) and low hypotaurine (Pc <0.0001) were useful for identifying new-onset type 1 diabetes, and high 5-methylcytosine (Pc = 0.002) for the complete-lack type 1 diabetes.Conclusions
In the present study, metabolic signatures were shown to be useful in identifying type 1 diabetes at different clinical stages, and 3-phenylpropionic acid and hypotaurine are novel biomarkers for identifying new-onset type 1 diabetes, suggesting the involvement of the gut bacterial environment, anti-oxidant mechanisms through the hypotaurine-taurine pathway and methylated deoxyribonucleic acid fragmentation in the process of β-cell destruction.
SUBMITTER: Noso S
PROVIDER: S-EPMC9807153 | biostudies-literature | 2023 Jan
REPOSITORIES: biostudies-literature
Journal of diabetes investigation 20221013 1
<h4>Aims/introduction</h4>In the development of type 1 diabetes, metabolites are significantly altered and might be involved in β-cell destruction and protection. We aimed to identify new metabolic markers of β-cell destruction in type 1 diabetes patients.<h4>Materials and methods</h4>A total of 33 participants were recruited for this cross-sectional observational study: 23 with type 1 diabetes, seven with type 2 diabetes and three healthy controls. Those with type 1 diabetes were further subdiv ...[more]