Unknown

Dataset Information

0

Single-cell transcriptomic analysis reveals diversity within mammalian spinal motor neurons.


ABSTRACT: Spinal motor neurons (MNs) integrate sensory stimuli and brain commands to generate movements. In vertebrates, the molecular identities of the cardinal MN types such as those innervating limb versus trunk muscles are well elucidated. Yet the identities of finer subtypes within these cell populations that innervate individual muscle groups remain enigmatic. Here we investigate heterogeneity in mouse MNs using single-cell transcriptomics. Among limb-innervating MNs, we reveal a diverse neuropeptide code for delineating putative motor pool identities. Additionally, we uncover that axial MNs are subdivided into three molecularly distinct subtypes, defined by mediolaterally-biased Satb2, Nr2f2 or Bcl11b expression patterns with different axon guidance signatures. These three subtypes are present in chicken and human embryos, suggesting a conserved axial MN expression pattern across higher vertebrates. Overall, our study provides a molecular resource of spinal MN types and paves the way towards deciphering how neuronal subtypes evolved to accommodate vertebrate motor behaviors.

SUBMITTER: Liau ES 

PROVIDER: S-EPMC9810664 | biostudies-literature | 2023 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Single-cell transcriptomic analysis reveals diversity within mammalian spinal motor neurons.

Liau Ee Shan ES   Jin Suoqin S   Chen Yen-Chung YC   Liu Wei-Szu WS   Calon Maëliss M   Nedelec Stéphane S   Nie Qing Q   Chen Jun-An JA  

Nature communications 20230103 1


Spinal motor neurons (MNs) integrate sensory stimuli and brain commands to generate movements. In vertebrates, the molecular identities of the cardinal MN types such as those innervating limb versus trunk muscles are well elucidated. Yet the identities of finer subtypes within these cell populations that innervate individual muscle groups remain enigmatic. Here we investigate heterogeneity in mouse MNs using single-cell transcriptomics. Among limb-innervating MNs, we reveal a diverse neuropeptid  ...[more]

Similar Datasets

2022-11-18 | GSE183759 | GEO
| PRJNA761994 | ENA
| S-EPMC8016743 | biostudies-literature
2020-12-31 | GSE161621 | GEO
| S-EPMC10926001 | biostudies-literature
| S-EPMC10274884 | biostudies-literature
| S-EPMC9021266 | biostudies-literature
| S-EPMC6169839 | biostudies-literature
| S-EPMC8733252 | biostudies-literature
| S-EPMC11784480 | biostudies-literature