Unknown

Dataset Information

0

Efficient electrocatalytic nitrogen reduction to ammonia with aqueous silver nanodots.


ABSTRACT: The electrocatalytic nitrogen (N2) reduction reaction (NRR) relies on the development of highly efficient electrocatalysts and electrocatalysis systems. Herein, we report a non-loading electrocatalysis system, where the electrocatalysts are dispersed in aqueous solution rather than loading them on electrode substrates. The system consists of aqueous Ag nanodots (AgNDs) as the catalyst and metallic titanium (Ti) mesh as the current collector for electrocatalytic NRR. The as-synthesized AgNDs, homogeneously dispersed in 0.1 M Na2SO4 solution (pH = 10.5), can achieve an NH3 yield rate of 600.4 ± 23.0 μg h-1 mgAg-1 with a faradaic efficiency (FE) of 10.1 ± 0.7% at -0.25 V (vs. RHE). The FE can be further improved to be 20.1 ± 0.9% at the same potential by using Ti mesh modified with oxygen vacancy-rich TiO2 nanosheets as the current collector. Utilizing the aqueous AgNDs catalyst, a Ti plate based two-electrode configured flow-type electrochemical reactor was developed to achieve an NH3 yield rate of 804.5 ± 30.6 μg h-1 mgAg-1 with a FE of 8.2 ± 0.5% at a voltage of -1.8 V. The designed non-loading electrocatalysis system takes full advantage of the AgNDs' active sites for N2 adsorption and activation, following an alternative hydrogenation mechanism revealed by theoretical calculations.

SUBMITTER: Li W 

PROVIDER: S-EPMC9814735 | biostudies-literature | 2021 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Efficient electrocatalytic nitrogen reduction to ammonia with aqueous silver nanodots.

Li Wenyi W   Li Ke K   Ye Yixing Y   Zhang Shengbo S   Liu Yanyan Y   Wang Guozhong G   Liang Changhao C   Zhang Haimin H   Zhao Huijun H  

Communications chemistry 20210129 1


The electrocatalytic nitrogen (N<sub>2</sub>) reduction reaction (NRR) relies on the development of highly efficient electrocatalysts and electrocatalysis systems. Herein, we report a non-loading electrocatalysis system, where the electrocatalysts are dispersed in aqueous solution rather than loading them on electrode substrates. The system consists of aqueous Ag nanodots (AgNDs) as the catalyst and metallic titanium (Ti) mesh as the current collector for electrocatalytic NRR. The as-synthesized  ...[more]

Similar Datasets

| S-EPMC7596869 | biostudies-literature
| S-EPMC11826969 | biostudies-literature
| S-EPMC11197710 | biostudies-literature
| S-EPMC10628069 | biostudies-literature
| S-EPMC9052113 | biostudies-literature
| S-EPMC5643308 | biostudies-literature
| S-EPMC9286678 | biostudies-literature
| S-EPMC11565284 | biostudies-literature
| S-EPMC11848547 | biostudies-literature
| S-EPMC9530228 | biostudies-literature