Unknown

Dataset Information

0

Multiparametric Data-driven Imaging Markers: Guidelines for Development, Application and Reporting of Model Outputs in Radiomics.


ABSTRACT: This paper is the fifth in a five-part series on statistical methodology for performance assessment of multi-parametric quantitative imaging biomarkers (mpQIBs) for radiomic analysis. Radiomics is the process of extracting visually imperceptible features from radiographic medical images using data-driven algorithms. We refer to the radiomic features as data-driven imaging markers (DIMs), which are quantitative measures discovered under a data-driven framework from images beyond visual recognition but evident as patterns of disease processes irrespective of whether or not ground truth exists for the true value of the DIM. This paper aims to set guidelines on how to build machine learning models using DIMs in radiomics and to apply and report them appropriately. We provide a list of recommendations, named RANDAM (an abbreviation of "Radiomic ANalysis and DAta Modeling"), for analysis, modeling, and reporting in a radiomic study to make machine learning analyses in radiomics more reproducible. RANDAM contains five main components to use in reporting radiomics studies: design, data preparation, data analysis and modeling, reporting, and material availability. Real case studies in lung cancer research are presented along with simulation studies to compare different feature selection methods and several validation strategies.

SUBMITTER: Wang X 

PROVIDER: S-EPMC9825652 | biostudies-literature | 2023 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Multiparametric Data-driven Imaging Markers: Guidelines for Development, Application and Reporting of Model Outputs in Radiomics.

Wang Xiaofeng X   Pennello Gene G   deSouza Nandita M NM   Huang Erich P EP   Buckler Andrew J AJ   Barnhart Huiman X HX   Delfino Jana G JG   Raunig David L DL   Wang Lu L   Guimaraes Alexander R AR   Hall Timothy J TJ   Obuchowski Nancy A NA  

Academic radiology 20221118 2


This paper is the fifth in a five-part series on statistical methodology for performance assessment of multi-parametric quantitative imaging biomarkers (mpQIBs) for radiomic analysis. Radiomics is the process of extracting visually imperceptible features from radiographic medical images using data-driven algorithms. We refer to the radiomic features as data-driven imaging markers (DIMs), which are quantitative measures discovered under a data-driven framework from images beyond visual recognitio  ...[more]

Similar Datasets

| S-EPMC8155615 | biostudies-literature
| S-EPMC6690492 | biostudies-literature
| S-EPMC4666087 | biostudies-literature
| S-EPMC7066290 | biostudies-literature
| S-EPMC6595160 | biostudies-literature
| S-EPMC7154969 | biostudies-literature
| S-EPMC9989162 | biostudies-literature
| S-EPMC7308458 | biostudies-literature
| S-EPMC10946103 | biostudies-literature
| S-EPMC8392809 | biostudies-literature