Project description:Bacterial meningitis is a life-threatening infectious disease with severe neurological sequelae and a high mortality rate, in which Escherichia coli is one of the primary Gram-negative etiological bacteria. Meningitic E. coli infection is often accompanied by an elevated blood-brain barrier (BBB) permeability. BBB is the structural and functional barrier composed of brain microvascular endothelial cells (BMECs), astrocytes, and pericytes, and we have previously shown that astrocytes-derived TGFβ1 physiologically maintained the BBB permeability by triggering a non-canonical hedgehog signaling in brain microvascular endothelial cells (BMECs). Here, we subsequently demonstrated that meningitic E. coli infection could subvert this intercellular communication within BBB by attenuating TGFBRII/Gli2-mediated such signaling. By high-throughput screening, we identified E. coli α-hemolysin as the critical determinant responsible for this attenuation through Sp1-dependent TGFBRII reduction and triggering Ca2+ influx and protein kinase A activation, thus leading to Gli2 suppression. Additionally, the exogenous hedgehog agonist SAG exhibited promising protection against the infection-caused BBB dysfunction. Our work revealed a hedgehog-targeted pathogenic mechanism during meningitic E. coli-caused BBB disruption and suggested that activating hedgehog signaling within BBB could be a potential protective strategy for future therapy of bacterial meningitis.
Project description:Alpha 7 nicotinic acetylcholine receptor (α7 nAChR) is critical for the pathogenesis of Escherichia coli (E. coli) K1 meningitis, a severe central nervous system infection of the neonates. However, little is known about how E. coli K1 manipulates α7 nAChR signaling. Here, through employing immortalized cell lines, animal models, and human transcriptional analysis, we showed that E. coli K1 infection triggers releasing of secreted Ly6/Plaur domain containing 1 (SLURP1), an endogenous α7 nAChR ligand. Exogenous supplement of SLURP1, combined with SLURP1 knockdown or overexpression cell lines, showed that SLURP1 is required for E. coli K1 invasion and neutrophils migrating across the blood-brain barrier (BBB). Furthermore, we found that SLURP1 is required for E. coli K1-induced α7 nAChR activation. Finally, the promoting effects of SLURP1 on the pathogenesis of E. coli K1 meningitis was significantly abolished in the α7 nAChR knockout mice. These results reveal that E. coli K1 exploits SLURP1 to activate α7 nAChR and facilitate its pathogenesis, and blocking SLURP1-α7 nAChR interaction might represent a novel therapeutic strategy for E. coli K1 meningitis.
Project description:The cellular barriers of the central nervous system proficiently protect the brain parenchyma from infectious insults. Yet, the single-celled parasite Toxoplasma gondii commonly causes latent cerebral infection in humans and other vertebrates. Here, we addressed the role of the cerebral vasculature in the passage of T. gondii to the brain parenchyma. Shortly after inoculation in mice, parasites mainly localized to cortical capillaries, in preference over post-capillary venules, cortical arterioles or meningeal and choroidal vessels. Early invasion to the parenchyma (days 1-5) occurred in absence of a measurable increase in blood-brain barrier (BBB) permeability, perivascular leukocyte cuffs or hemorrhage. However, sparse focalized permeability elevations were detected adjacently to replicative parasite foci. Further, T. gondii triggered inflammatory responses in cortical microvessels and endothelium. Pro- and anti-inflammatory treatments of mice with LPS and hydrocortisone, respectively, impacted BBB permeability and parasite loads in the brain parenchyma. Finally, pharmacological inhibition or Cre/loxP conditional knockout of endothelial focal adhesion kinase (FAK), a BBB intercellular junction regulator, facilitated parasite translocation to the brain parenchyma. The data reveal that the initial passage of T. gondii to the central nervous system occurs principally across cortical capillaries. The integrity of the microvascular BBB restricts parasite transit, which conversely is exacerbated by the inflammatory response.
Project description:Bacterial meningitis remains a leading cause of infection-related mortality worldwide. Although Escherichia coli (E. coli) is the most common etiology of neonatal meningitis, the underlying mechanisms governing bacterial blood-brain barrier (BBB) disruption during infection remain elusive. We observed that infection of human brain microvascular endothelial cells with meningitic E. coli triggers the activation of early growth response 1 (Egr-1), a host transcriptional activator. Through integrated chromatin immunoprecipitation sequencing and transcriptome analysis, we identified Egr-1 as a crucial regulator for maintaining BBB integrity. Mechanistically, Egr-1 induced cytoskeletal changes and downregulated tight junction protein expression by directly targeting VEGFA, PDGFB, and ANGPTL4, resulting in increased BBB permeability. Meanwhile, Egr-1 also served as a master regulator in the initiation of neuroinflammatory response during meningitic E. coli infection. Our findings support an Egr-1-dependent mechanism of BBB disruption by meningitic E. coli, highlighting a promising therapeutic target for bacterial meningitis.
Project description:Escherichia coli is the most common Gram-negative bacterium that possesses the ability to cause neonatal meningitis, which develops as circulating bacteria penetrate the blood-brain barrier (BBB). However, whether meningitic E. coli could induce disruption of the BBB and the underlying mechanisms are poorly understood. Our current work highlight for the first time the participation of VEGFA and Snail-1, as well as the potential mechanisms, in meningitic E. coli induced disruption of the BBB. Here, we characterized a meningitis-causing E. coli PCN033, and demonstrated that PCN033 invasion could increase the BBB permeability through downregulating and remodeling the tight junction proteins (TJ proteins). This process required the PCN033 infection-induced upregulation of VEGFA and Snail-1, which involves the activation of TLR2-MAPK-ERK1/2 signaling cascade. Moreover, production of proinflammatory cytokines and chemokines in response to infection also promoted the upregulation of VEGFA and Snail-1, therefore further mediating the BBB disruption. Our observations reported here directly support the involvement of VEGFA and Snail-1 in meningitic E. coli induced BBB disruption, and VEGFA and Snail-1 would therefore represent the essential host targets for future prevention of clinical E. coli meningitis.
Project description:Brain microvascular endothelial cells (BMECs) constitute the structural and functional basis for the blood-brain barrier (BBB) and play essential roles in bacterial meningitis. Although the BBB integrity regulation has been under extensive investigation, there is little knowledge regarding the roles of long non-coding RNAs (lncRNAs) in this event. The present study aimed to investigate the roles of one potential lncRNA, lncRSPH9-4, in meningitic E. coli infection of BMECs. LncRSPH9-4 was cytoplasm located and significantly up-regulated in meningitic E. coli-infected hBMECs. Electrical cell-substrate impedance sensing (ECIS) measurement and Western blot assay demonstrated lncRSPH9-4 overexpression in hBMECs mediated the BBB integrity disruption. By RNA-sequencing analysis, 639 mRNAs and 299 miRNAs were significantly differentiated in response to lncRSPH9-4 overexpression. We further found lncRSPH9-4 regulated the permeability in hBMECs by competitively sponging miR-17-5p, thereby increasing MMP3 expression, which targeted the intercellular tight junctions. Here we reported the infection-induced lncRSPH9-4 aggravated disruption of the tight junctions in hBMECs, probably through the miR-17-5p/MMP3 axis. This finding provides new insights into the function of lncRNAs in BBB integrity during meningitic E. coli infection and provides the novel nucleic acid targets for future treatment of bacterial meningitis.
Project description:Alpha7 nicotinic acetylcholine receptor (nAChR), an essential regulator of inflammation, is abundantly expressed in hippocampal neurons, which are vulnerable to bacterial meningitis. However, it is unknown whether ?7 nAChR contributes to the regulation of these events. In this report, an aggravating role of ?7 nAChR in host defense against meningitic E. coli infection was demonstrated by using ?7-deficient (?7(-/-)) mouse brain microvascular endothelial cells (BMEC) and animal model systems. As shown in our in vitro and in vivo studies, E. coli K1 invasion and polymorphonuclear neutrophil (PMN) transmigration across the blood-brain barrier (BBB) were significantly reduced in ?7(-/-) BMEC and ?7(-/-) mice. Stimulation by nicotine was abolished in the ?7(-/-) cells and animals. The same blocking effect was achieved by methyllycaconitine (?7 antagonist). The tight junction molecules occludin and ZO-1 were significantly reduced in the brain cortex of wildtype mice infected with E. coli and treated with nicotine, compared to ?7(-/-) cells and animals. Decreased neuronal injury in the hippocampal dentate gyrus was observed in ?7(-/-) mice with meningitis. Proinflammatory cytokines (IL-1?, IL-6, TNF?, MCP-1, MIP-1alpha, and RANTES) and adhesion molecules (CD44 and ICAM-1) were significantly reduced in the cerebrospinal fluids of the ?7(-/-) mice with E. coli meningitis. Furthermore, ?7 nAChR is the major calcium channel for nicotine- and E. coli K1-increased intracellular calcium concentrations of mouse BMEC. Taken together, our data suggest that ?7 nAChR plays a detrimental role in the host defense against meningitic infection by modulation of pathogen invasion, PMN recruitment, calcium signaling and neuronal inflammation.
Project description:Bacterial meningitis is currently recognized as one of the most important life-threatening infections of the central nervous system (CNS) with high morbidity and mortality, despite the advancements in antimicrobial treatment. The disruption of blood-brain barrier (BBB) induced by meningitis bacteria is crucial for the development of bacterial meningitis. However, the complete mechanisms involving in the BBB disruption remain to be elucidated. Here, we found meningitic Escherichia coli induction of angiopoietin-like 4 (ANGPTL4) in brain microvascular endothelial cells (BMECs) contributes to BBB disruption via ARHGAP5/RhoA/MYL5 signaling cascade, by the demonstration that ANGPTL4 was significantly upregulated in meningitis E. coli infection of BMECs as well as mice, and treatment of the recombinant ANGPTL4 protein led to an increased permeability of the BBB in vitro and in vivo. Moreover, we found that ANGPTL4 did not affect the expression of tight junction proteins involved in BBB disruption, but it increased the expression of MYL5, which was found to have a negative role on the regulation of barrier function during meningitic E. coli infection, through the activation of RhoA signaling pathway. To our knowledge, this is the first report demonstrating the disruption of BBB induced by ANGPTL4 through the ARHGAP5/RhoA/MYL5 pathway, which largely supports the involvement of ANGPTL4 during meningitic E. coli invasion and further expands the theoretical basis for the mechanism of bacterial meningitis.
Project description:Meningitic Escherichia coli invasion of the host brain can lead to increased blood-brain barrier (BBB) permeability. Circular RNAs (circRNAs) are non-coding RNAs, highly abundant in the brain, that are widely involved in the pathological processes of central nervous system (CNS) disorders; however, whether circRNAs participate in the regulation of BBB permeability during E. coli meningitis remains unknown. Here, we identified a novel circRNA, circ_2858, that was significantly upregulated in human brain microvascular endothelial cells (hBMECs) upon meningitic E. coli infection. We also found that circ_2858 regulated BBB permeability in hBMECs by competitively binding miR-93-5p, thereby inducing the upregulation of vascular endothelial growth factor A and finally resulting in downregulation as well as altered distribution of tight junction proteins such as ZO-1, Occludin, and Claudin-5. These findings provide novel insights into the influence of circ_2858 on BBB permeability during the pathogenic process of E. coli meningitis, suggesting potential nucleic acid targets for future prevention and therapy of CNS infection induced by meningitic E. coli.
Project description:Escherichia coli K1 meningitis continues to be a major threat to neonatal health. Previous studies demonstrated that outer membrane protein A (OmpA) of E. coli K1 interacts with endothelial cell glycoprotein 96 (Ecgp96) in the blood-brain barrier to enter the central nervous system. Here we show that the interaction between OmpA and Ecgp96 downregulates peroxisome proliferator-activated receptor γ (PPAR-γ) and glucose transporter 1 (GLUT-1) levels in human brain microvascular endothelial cells, causing disruption of barrier integrity and inhibition of glucose uptake. The suppression of PPAR-γ and GLUT-1 by the bacteria in the brain microvessels of newborn mice causes extensive pathophysiology owing to interleukin 6 production. Pretreatment with partial or selective PPAR-γ agonists ameliorate the pathological outcomes of infection by suppressing interleukin 6 production in the brain. Thus, inhibition of PPAR-γ and GLUT-1 by E. coli K1 is a novel pathogenic mechanism in meningitis, and pharmacological upregulation of PPAR-γ and GLUT-1 levels may provide novel therapeutic avenues.