Unknown

Dataset Information

0

Ultrasensitive Detection of Interleukin 6 by Using Silicon Nanowire Field-Effect Transistors.


ABSTRACT: Interleukin 6 (IL-6) has been regarded as a biomarker that can be applied as a predictor for the severity of COVID-19-infected patients. The IL-6 level also correlates well with respiratory dysfunction and mortality risk. In this work, three silanization approaches and two types of biorecognition elements were used on the silicon nanowire field-effect transistors (SiNW-FETs) to investigate and compare the sensing performance on the detection of IL-6. Experimental data revealed that the mixed-SAMs-modified silica surface could have superior surface morphology to APTES-modified and APS-modified silica surfaces. According to the data on detecting various concentrations of IL-6, the detection range of the aptamer-functionalized SiNW-FET was broader than that of the antibody-functionalized SiNW-FET. In addition, the lowest concentration of valid detection for the aptamer-functionalized SiNW-FET was 2.1 pg/mL, two orders of magnitude lower than the antibody-functionalized SiNW-FET. The detection range of the aptamer-functionalized SiNW-FET covered the concentration of IL-6, which could be used to predict fatal outcomes of COVID-19. The detection results in the buffer showed that the anti-IL-6 aptamer could produce better detection results on the SiNW-FETs, indicating its great opportunity in applications for sensing clinical samples.

SUBMITTER: Hu WP 

PROVIDER: S-EPMC9865274 | biostudies-literature | 2023 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Ultrasensitive Detection of Interleukin 6 by Using Silicon Nanowire Field-Effect Transistors.

Hu Wen-Pin WP   Wu Yu-Ming YM   Vu Cao-An CA   Chen Wen-Yih WY  

Sensors (Basel, Switzerland) 20230105 2


Interleukin 6 (IL-6) has been regarded as a biomarker that can be applied as a predictor for the severity of COVID-19-infected patients. The IL-6 level also correlates well with respiratory dysfunction and mortality risk. In this work, three silanization approaches and two types of biorecognition elements were used on the silicon nanowire field-effect transistors (SiNW-FETs) to investigate and compare the sensing performance on the detection of IL-6. Experimental data revealed that the mixed-SAM  ...[more]

Similar Datasets

| S-EPMC10857411 | biostudies-literature
| S-EPMC5255564 | biostudies-literature
| S-EPMC9227456 | biostudies-literature
| S-EPMC5462787 | biostudies-literature
| S-EPMC6832293 | biostudies-literature
| S-EPMC8901646 | biostudies-literature
| S-EPMC11754803 | biostudies-literature
| S-EPMC8948590 | biostudies-literature
| S-EPMC10472425 | biostudies-literature
| S-EPMC4245716 | biostudies-literature