Ontology highlight
ABSTRACT: Background and aims
Proper measurement of expected risk is important for making rational decisions, and maladaptive decision making may underlie various psychiatric disorders. However, differentially expressed genetic profiling involved in this process is still largely unknown. A rodent version of the gambling task (rGT) has been developed to measure decision-making by adopting the same principle of Iowa Gambling Task in humans. In the present study, we examined using next-generation sequencing (NGS) technique whether there are differences in gene expression profiles in the medial prefrontal cortex (mPFC) and the nucleus accumbens (NAc) when rats make different choices toward risk in rGT.Methods
Rats were trained in a touch screen chamber to learn the relationships between 4 different light signals on the window of the screen and accompanied reward outcomes or punishments set up with different magnitudes and probabilities. Once they showed a stabilized pattern of preference upon free choice, rats were classified into risk-averse or risk-seeking groups. After performing the rGT, rats were decapitated, the mPFC and the NAc was dissected out, and NGS was performed with the total RNA extracted.Results
We found that 477 and 36 genes were differentially expressed (approximately 75 and 83% out of them were downregulated) in the mPFC and the NAc, respectively, in risk-seeking compared to risk-averse rats. Among those, we suggested a few top ranked genes that may contribute to promoting risky choices.Discussion and conclusions
Our findings provide insights into transcriptional components underlying risky choices in rats.
SUBMITTER: Kwak MJ
PROVIDER: S-EPMC9872528 | biostudies-literature | 2022 Sep
REPOSITORIES: biostudies-literature
Kwak Myung Ji MJ Kim Wha Young WY Jung Seung-Hyun SH Chung Yeun-Jun YJ Kim Jeong-Hoon JH
Journal of behavioral addictions 20220912 3
<h4>Background and aims</h4>Proper measurement of expected risk is important for making rational decisions, and maladaptive decision making may underlie various psychiatric disorders. However, differentially expressed genetic profiling involved in this process is still largely unknown. A rodent version of the gambling task (rGT) has been developed to measure decision-making by adopting the same principle of Iowa Gambling Task in humans. In the present study, we examined using next-generation seq ...[more]