Project description:We present calculated valence and C 1s near-edge excitation spectra of solid C60 and experimental results measured with high-resolution electron energy-loss spectroscopy. The near-edge calculations are carried out using three different methods: solution of the Bethe-Salpeter equation (BSE) as implemented in the OCEAN suite (Obtaining Core Excitations with ab initio methods and the NIST BSE solver), the excited-electron core-hole approach (XCH), and the constrained-occupancy method using the Stockholm-Berlin core-excitation code, StoBe. The three methods give similar results and are in good agreement with experiment, though the BSE results are the most accurate. The BSE formalism is also used to carry out valence level calculations using the NIST Bethe-Salpeter Equation solver (NBSE). Theoretical results include self-energy corrections to the band gap and band widths, lifetime-damping effects, and Debye-Waller effects in the core-excitation case. A comparison of spectral features to those observed experimentally illustrates the sensitivity of certain features to computational details, such as self-energy corrections to the band structure and core-hole screening.
Project description:In a previous study, we used transmission electron microscopy and electron energy-loss (EEL) spectroscopy to investigate dehydrogenation of AlH₃ particles. In the present study, we systematically examine differences in the chemical bonding states of Al-containing compounds (including AlH₃) by comparing their Al-L2,3 EEL spectra. The spectral chemical shift and the fine peak structure of the spectra were consistent with the degree of covalent bonding of Al. This finding will be useful for future nanoscale analysis of AlH₃ dehydrogenation toward the cell.
Project description:Inspired by the recently synthesized inorganic metallocene derivatives Fe(P4)22-, we have identified four stable inorganic metallocene nanowires, MP4 (M = Sc, Ti, Cr and Fe) in configurations of either regular quadrangular prism (Q-type) or anticube (A-type), and further investigated their magnetic and electronic characteristics utilizing the first-principles calculation. It shows that CrP4 is a ferromagnetic metal, while other nanowires are semiconducting antiferromagnets with bandgaps of 0.44, 1.88, and 2.29 eV within the HSE06 level. It also shows that both ScP4 and TiP4 can be stabilized in the Q-type and A-type, corresponding to the antiferromagnetic and ferromagnetic ground states, respectively, indicating a configuration-dependent magnetism. The thermodynamic and lattice stabilities are confirmed by the ab initio molecular dynamics and phonon spectra. This study has unmasked the structural and physical properties of novel inorganic metallocene nanowires, and revealed their potential application in spintronics.
Project description:While ceramic materials are widely used in our society, their understanding of the plasticity is not fully understood. MgO is one of the prototypical ceramics, extensively investigated experimentally and theoretically. However, there is still controversy over whether edge or screw dislocations glide more easily. In this study, we directly model the atomic structures of the dislocation cores in MgO based on the first-principles calculations and estimate the Peierls stresses. Our results reveal that the screw dislocation on the primary slip system exhibits a smaller Peierls stress than the edge dislocation. The tendency is not consistent with metals, but rather with TiN, suggesting a characteristic inherent to rock-salt type materials.
Project description:Two new hypothetical zirconium diboride (ZrB 2 ) polymorphs: (hP6-P6 3 /mmc-space group, no. 194) and (oP6-Pmmn-space group, no. 59), were thoroughly studied under the first-principles density functional theory calculations from the structural, mechanical and thermodynamic properties point of view. The proposed phases are thermodynamically stable (negative formation enthalpy). Studies of mechanical properties indicate that new polymorphs are less hard than the known phase (hP3-P6/mmm-space group, no. 191) and are not brittle. Analysis of phonon band structure and density of states (DOS) also show that the phonon modes have positive frequencies everywhere and the new ZrB 2 phases are not only mechanically but also dynamically stable. The estimated acoustic Debye temperature, Θ D , for the two new proposed ZrB 2 phases is about 760 K. The thermodynamic properties such as internal energy, free energy, entropy and constant-volume specific heat are also presented.
Project description:We explore the stability, electronic properties, and quantum capacitance of doped/co-doped graphene with B, N, P, and S atoms based on first-principles methods. B, N, P, and S atoms are strongly bonded with graphene, and all of the relaxed systems exhibit metallic behavior. While graphene with high surface area can enhance the double-layer capacitance, its low quantum capacitance limits its application in supercapacitors. This is a direct result of the limited density of states near the Dirac point in pristine graphene. We find that the triple N and S doping with single vacancy exhibits a relatively stable structure and high quantum capacitance. It is proposed that they could be used as ideal electrode materials for symmetry supercapacitors. The advantages of some co-doped graphene systems have been demonstrated by calculating quantum capacitance. We find that the N/S and N/P co-doped graphene with single vacancy is suitable for asymmetric supercapacitors. The enhanced quantum capacitance contributes to the formation of localized states near the Dirac point and/or Fermi-level shifts by introducing the dopant and vacancy complex.
Project description:Luminescence properties of colloidal quantum dots have found applications in imaging, displays, light-emitting diodes and lasers, and single photon sources. Despite wide interest, several experimental observations in low-temperature photoluminescence of these quantum dots, such as the short lifetime on the scale of microseconds and a zero-longitudinal optical phonon line in spectrum, both attributed to a dark exciton in literature, remain unexplained by existing models. Here we propose a theoretical model including the effect of solid-state environment on luminescence. The model captures both coherent and incoherent interactions of band-edge exciton with phonon modes. Our model predicts formation of dressed states by coupling of the exciton with a confined acoustic phonon mode, and explains the short lifetime and the presence of the zero-longitudinal optical phonon line in the spectrum. Accounting for the interaction of the exciton with bulk phonon modes, the model also explains the experimentally observed temperature-dependence of the photoluminescence decay dynamics and temperature-dependence of the photoluminescence spectrum.
Project description:Raman spectroscopy is a widely-used non-destructive material characterization method, which provides information about the vibrational modes of the material and therefore of its atomic structure and chemical composition. Interpretation of the spectra requires comparison to known references and to this end, experimental databases of spectra have been collected. Reference Raman spectra could also be simulated using atomistic first-principles methods but these are computationally demanding and thus the existing databases of computational Raman spectra are fairly small. In this work, we developed an optimized workflow to calculate the Raman spectra efficiently and taking full advantage of the phonon properties found in existing material databases. The workflow was benchmarked and validated by comparison to experiments and previous computational methods for select technologically relevant material systems. Using the workflow, we performed high-throughput calculations for a large set of materials (5099) belonging to many different material classes, and collected the results to a database. Finally, the contents of database are analyzed and the calculated spectra are shown to agree well with the experimental ones.
Project description:Proteasome is the major component of the crucial non-lysosomal protein degradation pathway in the cells, but the detailed reaction pathway is unclear. In this study, first-principles quantum mechanical/molecular mechanical free energy calculations have been performed to explore, for the first time, possible reaction pathways for proteasomal proteolysis/hydrolysis of a representative peptide, succinyl-leucyl-leucyl-valyl-tyrosyl-7-amino-4-methylcoumarin (Suc-LLVY-AMC). The computational results reveal that the most favorable reaction pathway consists of six steps. The first is a water-assisted proton transfer within proteasome, activating Thr1-O(?). The second is a nucleophilic attack on the carbonyl carbon of a Tyr residue of substrate by the negatively charged Thr1-O(?), followed by the dissociation of the amine AMC (third step). The fourth step is a nucleophilic attack on the carbonyl carbon of the Tyr residue of substrate by a water molecule, accompanied by a proton transfer from the water molecule to Thr1-N(z). Then, Suc-LLVY is dissociated (fifth step), and Thr1 is regenerated via a direct proton transfer from Thr1-N(z) to Thr1-O(?). According to the calculated energetic results, the overall reaction energy barrier of the proteasomal hydrolysis is associated with the transition state (TS3(b)) for the third step involving a water-assisted proton transfer. The determined most favorable reaction pathway and the rate-determining step have provided a reasonable interpretation of the reported experimental observations concerning the substituent and isotopic effects on the kinetics. The calculated overall free energy barrier of 18.2 kcal/mol is close to the experimentally derived activation free energy of ?18.3-19.4 kcal/mol, suggesting that the computational results are reasonable.